scholarly journals Nanoporous Metallic Films

2021 ◽  
Author(s):  
Swastic ◽  
Jegatha Nambi Krishnan

Nanoporous metallic films are known to have high surface to volume ratio due to the presence of pores. The presence of pores and ligaments make them suitable for various critical applications like sensing, catalysis, electrodes for energy applications etc. Additionally, they also combine properties of metals like good electrical and thermal conductivity and ductility. They can be fabricated using top-down or bottom-up approaches also known as dealloying and templating which give the fabricator room to tailor properties according to need. In addition, they could find potential applications in many relevant fields in current scenario like drug delivery vehicles. However, there is a long way to go to extract its whole potential.

2020 ◽  
Vol 16 ◽  
Author(s):  
Pravin Shende ◽  
Nikita P. Devlekar

: Industrial wastewater is one of the by-products of several industries and it consists of water that requires treatment before it is discharged in water bodies. The presence of toxins in wastewater such as dyes and heavy metals is hazardous to human health and requires effective removal to reduce environmental pollution. Industrial wastewater treatment has become a global concern in healthcare and environment leading to the development of various technologies for the removal of toxins from wastewater. Various processes and technologies such as advanced oxidation processes, adsorption and membrane technology show potential in treating industrial wastewater. Another source of toxins in the form of pesticides is harmful to human health leading to severe health problems. Nanocomposites show potential as efficient adsorbents for the removal of toxins owing to the enhanced adsorption capacity, promising physicochemical properties and high surface-to-volume ratio due to nanoscale dimension. Nanocomposites are cost effective and efficient nanoadsorbents for the removal of various toxins. This review focuses on the potential applications of nanocomposites as adsorbents for the removal of toxins like dyes, heavy metals and pesticides from wastewater and biological systems. The use of nanocomposites as efficient adsorbents in the removal of toxins, various isotherm models and adsorption kinetics applied in the mechanism of adsorption are also discussed in the article. In the near future, nanocomposites may provide a simple, economical and efficient adsorption system for the removal of toxins from wastewater and biological systems.


2021 ◽  
Vol 22 (17) ◽  
pp. 9588
Author(s):  
Christopher R. Gough ◽  
Xiao Hu

Micro-/nanofibers have shown high promise as drug delivery vehicles due to their high porosity and surface-area-to-volume ratio. The current study utilizes air-spraying, a novel fiber fabrication technique, to create silk micro-/nanofibers without the need for a high voltage power source. Air-spraying was used to create silk fibrous mats embedded with several model drugs with high efficiency. In order to compare the effect of biomaterial geometry on the release of the model drugs, silk films were also created and characterized. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and a drug release study were performed on both fiber and film samples to study how the model drugs interact with the protein structure. FTIR analysis showed that while drugs could interact with the protein structure of porous silk fibers, they could not interact with the flat geometry of silk films. As a result, fibers could protect select model drugs from thermal degradation and slow their release from the fiber network with more control than the silk films. A trend was also revealed where hydrophobic drugs were better protected and had a slower release than hydrophilic drugs. The results suggest that the physical and chemical properties of drugs and protein-based biomaterials are important for creating drug delivery vehicles with tailored release profiles and that fibers provide better tunability than films do.


2021 ◽  
Vol 9 ◽  
Author(s):  
Arbab Ali ◽  
Tufail Shah ◽  
Rehmat Ullah ◽  
Pingfan Zhou ◽  
Manlin Guo ◽  
...  

Diverse applications of nanoparticles (NPs) have revolutionized various sectors in society. In the recent decade, particularly magnetic nanoparticles (MNPs) have gained enormous interest owing to their applications in specialized areas such as medicine, cancer theranostics, biosensing, catalysis, agriculture, and the environment. Controlled surface engineering for the design of multi-functional MNPs is vital for achieving desired application. The MNPs have demonstrated great efficacy as thermoelectric materials, imaging agents, drug delivery vehicles, and biosensors. In the present review, first we have briefly discussed main synthetic methods of MNPs, followed by their characterizations and composition. Then we have discussed the potential applications of MNPs in different with representative examples. At the end, we gave an overview on the current challenges and future prospects of MNPs. This comprehensive review not only provides the mechanistic insight into the synthesis, functionalization, and application of MNPs but also outlines the limits and potential prospects.


Author(s):  
Siddhartha Kosti

Nanocomposites are defined as a combination of nanoparticles reinforced into the base material. They are of very small sizes (1nm = 10-9m) and possesses higher thermal properties. They are widely utilized in different applications, like in energy, construction, biomedical, chemical, electronics, agriculture, cosmetics, etc. This chapter deals with the application of nanocomposites (SiC/Al2O3/B4C/TiO2/ZnO/SiO2) in the field of energy applications by analyzing their properties (thermal-conductivity/density/specific-heat) using numerical models. The effect of nanoparticles reinforced wt. % concentration into a base material (Al6061/Al7075/H2O) is also analyzed. Results show that nanocomposites have higher effective thermal conductivity and are suitable for high heat-releasing energy devices. It is found that the addition of nanoparticles increases the surface area to volume ratio, which further increases the energy transfer rate. Results show that nanocomposites with lower effective density are suitable when there is a requirement of reduction in weight for the same heat release application.


2020 ◽  
Vol 26 (45) ◽  
pp. 5807-5818
Author(s):  
Nasrullah Shah ◽  
Dong Lin

Aerogels are a class of advanced materials having the lowest density with extraordinary characteristics of high surface area, extreme porosity, lowest thermal conductivity, and tunable surface chemistry. Aerogels of silica, alumina, carbon, metals, metal oxides, clay, cellulose, gelatin, chitosan, synthetic polymers and many others have attracted much interest for different potential applications. Several attempts have been made to improve the characteristics and performance efficiency of the aerogels. One of those is to fabricate composite aerogels to be used in several applications. In designing composite aerogels for biomedical and environmental purposes, the nature of the ingredient materials along with their net efficiency and cost are important to be considered. In this regard, various compositions of composite aerogels have been explored by researchers to make them suitable for use in these applications. In the present study, an attempt has been made to briefly summarize various studies of composite aerogels for biomedical and environmental applications.


2006 ◽  
Vol 920 ◽  
Author(s):  
Chang Seoul ◽  
Jin heon Kim ◽  
Tea-Heon Kim ◽  
Chang Seoul

AbstractThe conductive polymer poly (3,4-Ethylenedioxythiophene) (PEDOT) is a low band-gap polymer with high charge mobility and good thermal and chemical stability. Nanosized Ag particles have found many potential applications in technical fields because of their reduced sizes, high surface-to-volume ratio, and relatively high chemical stability in air. In this report, 3,4-Ethylenedioxythiophene (EDOT) was used as the reductant for the first time in the preparation of silver nanoparticles by the reduction of AgNO3 in water. And Ag/PEDOT nanoparticles composites conducting films deposited by inkjet printing technique on plastic substrates.


Author(s):  
H-C Liu ◽  
H Tsuru ◽  
A G Cooper ◽  
F B Prinz

Conventional heat exchangers are mainly constructed of metal alloys. The manufacturing process of metal alloys usually requires assembling and joining techniques such as welding and diffusion bonding. In addition, the structures are limited to simple shapes due to the restrictions of the fabrication methods. This research focused on the manufacturing of compact heat exchangers made of high thermal-conductivity ceramic material, rather than on the performance of the devices. To achieve a high surface-volume ratio in heat exchangers, a strategy was adopted that fabricates miniaturized devices with a high shape complexity. This paper discusses an approach that uses a combination of mould shape deposition manufacturing (Mould SDM) and the gelcasting process to fabricate monolithic ceramic heat exchangers. This approach not only makes one-piece heat exchangers possible but introduces materials with superior thermal properties to the heat management applications. Silicon carbide is chosen for such applications because of its high thermal conductivity, thermal resistance, and corrosion resistance. The high chemical resistance of ceramic materials also extends the use of heat exchangers to chemical processing devices such as chemical reactors. The initial investigation of the process for micro reactors is also discussed.


2021 ◽  
pp. 1-14
Author(s):  
Sairish Malik ◽  
Subramanian Sundarrajan ◽  
Tanveer Hussain ◽  
Ahsan Nazir ◽  
Seeram Ramakrishna

Research on synthesis, characterization, and understanding of novel properties of nanomaterials has led researchers to exploit their potential applications. When compared to other nanotechnologies described in the literature, electrospinning has received significant interest due to its ability to synthesize novel nanostructures (such as nanofibers, nanorods, nanotubes, etc.) with distinctive properties such as high surface-to-volume ratio, porosity, various morphologies such as fibers, tubes, ribbons, mesoporous and coated structures, and so on. Various materials such as polymers, ceramics, and composites have been fabricated using the electrospinning technique. Among them, polymers, especially block copolymers, are one of the useful and niche systems studied recently owing to their unique and fascinating properties in both solution and solid state due to thermodynamic incompatibility of the blocks, that results in microphase separation. Morphology and mechanical properties of electrospun block copolymers are intensely influenced by quantity and length of soft and hard segments. They are one of the best studied systems to fit numerous applications due to a broad variety of properties they display upon varying the composition ratio and molecular weight of blocks. In this review, the synthesis, fundamentals, electrospinning, and tissue engineering application of block copolymers are highlighted.


Author(s):  
Siddhartha Kosti

Nanocomposites are defined as a combination of nanoparticles reinforced into the base material. They are of very small sizes (1nm = 10-9m) and possesses higher thermal properties. They are widely utilized in different applications, like in energy, construction, biomedical, chemical, electronics, agriculture, cosmetics, etc. This chapter deals with the application of nanocomposites (SiC/Al2O3/B4C/TiO2/ZnO/SiO2) in the field of energy applications by analyzing their properties (thermal-conductivity/density/specific-heat) using numerical models. The effect of nanoparticles reinforced wt. % concentration into a base material (Al6061/Al7075/H2O) is also analyzed. Results show that nanocomposites have higher effective thermal conductivity and are suitable for high heat-releasing energy devices. It is found that the addition of nanoparticles increases the surface area to volume ratio, which further increases the energy transfer rate. Results show that nanocomposites with lower effective density are suitable when there is a requirement of reduction in weight for the same heat release application.


Author(s):  
Dheeraj K V S ◽  
Sarith Plasseril Sathian

Thermal transport in 2-D (Dimensional) structures is highly susceptible to external perturbations such as strain, owing to their high surface-to-volume ratio. In this study, we investigate the influence of strain...


Sign in / Sign up

Export Citation Format

Share Document