scholarly journals Fruit Flies (Drosophila spp.) Collection, Handling, and Maintenance: Field to Laboratory

2021 ◽  
Author(s):  
Pragya Topal ◽  
Divita Garg ◽  
Rajendra S. Fartyal

As drosophilids are versatile, low maintenance and non-harming model organisms, they can be easily used in all fields of life sciences like Genetics, Biotechnology, Cancer biology, Genomics, Reproductive biology, Developmental biology, Micro chemical studies, ecology and much more. For using such a model organism, we need to learn capturing, rearing and culturing their progeny along with basic identification and differentiation between males and females. This chapter is being emphasized on techniques of capturing these flies with different and effective techniques. Along with it, most species-specific baits are discussed to catch more yield. Culture food media, a set measurement of different ingredients is used to rear the collected sample. The reasons for using each ingredient are also discussed in this chapter. At last, this chapter highlights the basic clues to identify different species in the field and lab along with learning distinguishing characteristics of males and females easily and effectively.

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2226
Author(s):  
Sazia Kunvar ◽  
Sylwia Czarnomska ◽  
Cino Pertoldi ◽  
Małgorzata Tokarska

The European bison is a non-model organism; thus, most of its genetic and genomic analyses have been performed using cattle-specific resources, such as BovineSNP50 BeadChip or Illumina Bovine 800 K HD Bead Chip. The problem with non-specific tools is the potential loss of evolutionary diversified information (ascertainment bias) and species-specific markers. Here, we have used a genotyping-by-sequencing (GBS) approach for genotyping 256 samples from the European bison population in Bialowieza Forest (Poland) and performed an analysis using two integrated pipelines of the STACKS software: one is de novo (without reference genome) and the other is a reference pipeline (with reference genome). Moreover, we used a reference pipeline with two different genomes, i.e., Bos taurus and European bison. Genotyping by sequencing (GBS) is a useful tool for SNP genotyping in non-model organisms due to its cost effectiveness. Our results support GBS with a reference pipeline without PCR duplicates as a powerful approach for studying the population structure and genotyping data of non-model organisms. We found more polymorphic markers in the reference pipeline in comparison to the de novo pipeline. The decreased number of SNPs from the de novo pipeline could be due to the extremely low level of heterozygosity in European bison. It has been confirmed that all the de novo/Bos taurus and Bos taurus reference pipeline obtained SNPs were unique and not included in 800 K BovineHD BeadChip.


2020 ◽  
Vol 145 ◽  
pp. 01008
Author(s):  
Yixin Zhou

X-inactivation is a strategy in female mammals aiming at maximizing gene inactivation of one single X chromosome in order to balance X dosage between males and females. Various human X-linked disorders have been reported related to one or more X-inactivation patterns. It is necessary to understand their relationship to study X-linked disorders. Current researches largely rely on clinical phenotype research and model organism. Considering the differences between human and model organisms, it is vital to find a suitable model of a specific disorder. The paper reviews different patterns and specific disorders linked with X-inac tivation. Also, the advantages and disadvantages of applying specific model organisms in different disorders will be discussed.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
SHAMIM AKHTER CHOUDHARY

In the present study, an attempt was made to study the effect of plant extract on Sexual behaviour of Mutant Strain (Curled) of Drosophila melanogaster. The LC50 has been estimated with 1% of the food media. The virgin females and males were isolated and fed with normal food media for three days. Then sub-lethal concentrations of 0.625 μl / 100 ml food, 1.2 μl /100 ml food, 2.5μl /100 / food of nicotine were mixed in food medium and allowed in flies to feed for two days. Then appropriate combination of untreated / treated males and females were introduced into the mating chamber. Courtship latency, mating latency and copulation duration were studied. After observation of the behaviour, mated flies were allowed to produce progeny. The sexual behaviour of bachelor male and virgin female obtained in the progeny was also studied. The pooled data were analyzed by student t-test and the result indicates p-value significant at 0.05 levels. The courtship latency was affected by in treatment but it is neither dose dependent nor sex dependent.


2021 ◽  
Vol 11 (10) ◽  
pp. 4613
Author(s):  
Gabriela-Maria Baci ◽  
Alexandra-Antonia Cucu ◽  
Adela Ramona Moise ◽  
Daniel Severus Dezmirean

Since ancient times, honey has been considered one of the most illustrious and esteemed natural products. Honey plays two key roles; specifically, it is an appreciated nutritional product, and also exhibits a wide range of beneficial properties for human health as a therapeutic agent. Furthermore, it has been shown that honey has valuable effects on the biological and physiological features of mulberry silkworms (Bombyx mori). Bombyx mori exhibits importance not only for the economy, but it also serves as an important biotechnological bioreactor for the production of recombinant proteins that have a great impact in the medical field and beyond. It also represents an important model organism for life sciences. In view of the fact that silk fibroin serves as a natural biopolymer that displays high biocompatibility with human organisms and due to honey’s various and remarkable properties for human health, the two elements are currently used together in order to develop ideal biomaterials for a wide range of purposes. In this review, by discussing the applicability of honey on Bombyx mori and beyond, the importance of honey for life sciences and related fields is spotlighted.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anastasiya Börsch ◽  
Daniel J. Ham ◽  
Nitish Mittal ◽  
Lionel A. Tintignac ◽  
Eugenia Migliavacca ◽  
...  

AbstractSarcopenia, the age-related loss of skeletal muscle mass and function, affects 5–13% of individuals aged over 60 years. While rodents are widely-used model organisms, which aspects of sarcopenia are recapitulated in different animal models is unknown. Here we generated a time series of phenotypic measurements and RNA sequencing data in mouse gastrocnemius muscle and analyzed them alongside analogous data from rats and humans. We found that rodents recapitulate mitochondrial changes observed in human sarcopenia, while inflammatory responses are conserved at pathway but not gene level. Perturbations in the extracellular matrix are shared by rats, while mice recapitulate changes in RNA processing and autophagy. We inferred transcription regulators of early and late transcriptome changes, which could be targeted therapeutically. Our study demonstrates that phenotypic measurements, such as muscle mass, are better indicators of muscle health than chronological age and should be considered when analyzing aging-related molecular data.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Puneet Sharma ◽  
Jie Wu ◽  
Benedikt S. Nilges ◽  
Sebastian A. Leidel

AbstractRibosome profiling measures genome-wide translation dynamics at sub-codon resolution. Cycloheximide (CHX), a widely used translation inhibitor to arrest ribosomes in these experiments, has been shown to induce biases in yeast, questioning its use. However, whether such biases are present in datasets of other organisms including humans is unknown. Here we compare different CHX-treatment conditions in human cells and yeast in parallel experiments using an optimized protocol. We find that human ribosomes are not susceptible to conformational restrictions by CHX, nor does it distort gene-level measurements of ribosome occupancy, measured decoding speed or the translational ramp. Furthermore, CHX-induced codon-specific biases on ribosome occupancy are not detectable in human cells or other model organisms. This shows that reported biases of CHX are species-specific and that CHX does not affect the outcome of ribosome profiling experiments in most settings. Our findings provide a solid framework to conduct and analyze ribosome profiling experiments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jay T. Lennon ◽  
Frank den Hollander ◽  
Maite Wilke-Berenguer ◽  
Jochen Blath

AbstractAcross the tree of life, populations have evolved the capacity to contend with suboptimal conditions by engaging in dormancy, whereby individuals enter a reversible state of reduced metabolic activity. The resulting seed banks are complex, storing information and imparting memory that gives rise to multi-scale structures and networks spanning collections of cells to entire ecosystems. We outline the fundamental attributes and emergent phenomena associated with dormancy and seed banks, with the vision for a unifying and mathematically based framework that can address problems in the life sciences, ranging from global change to cancer biology.


2019 ◽  
Vol 48 (D1) ◽  
pp. D650-D658 ◽  
Author(s):  
◽  
Julie Agapite ◽  
Laurent-Philippe Albou ◽  
Suzi Aleksander ◽  
Joanna Argasinska ◽  
...  

Abstract The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource.


2015 ◽  
Vol 145 (3-4) ◽  
pp. 192-200 ◽  
Author(s):  
Vladimir Krylov ◽  
Tereza Tlapakova

The genus Xenopus represents important model organisms in the field of developmental biology and chromosomal evolution. Developmental processes are tightly coupled with the analysis of gene function via genetic linkage and mapping. Cytogenetic techniques such as chromosome banding or FISH are essential tools for the determination of gene position and subsequently for the construction of linkage and physical maps. Here, we present a summary of key achievements in X. tropicalis and X. laevis cytogenetics with emphasis on the gene localization to chromosomes. The second part of this review is focused on the chromosomal evolution regarding both above-mentioned species. With respect to methodology, hybridization techniques such as FISH and chromosome-specific painting FISH are highlighted.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Lori A. McEachern

Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.


Sign in / Sign up

Export Citation Format

Share Document