scholarly journals Applicability of Honey on Silkworms (Bombyx mori) and Quality Improvement of Its Biomaterials

2021 ◽  
Vol 11 (10) ◽  
pp. 4613
Author(s):  
Gabriela-Maria Baci ◽  
Alexandra-Antonia Cucu ◽  
Adela Ramona Moise ◽  
Daniel Severus Dezmirean

Since ancient times, honey has been considered one of the most illustrious and esteemed natural products. Honey plays two key roles; specifically, it is an appreciated nutritional product, and also exhibits a wide range of beneficial properties for human health as a therapeutic agent. Furthermore, it has been shown that honey has valuable effects on the biological and physiological features of mulberry silkworms (Bombyx mori). Bombyx mori exhibits importance not only for the economy, but it also serves as an important biotechnological bioreactor for the production of recombinant proteins that have a great impact in the medical field and beyond. It also represents an important model organism for life sciences. In view of the fact that silk fibroin serves as a natural biopolymer that displays high biocompatibility with human organisms and due to honey’s various and remarkable properties for human health, the two elements are currently used together in order to develop ideal biomaterials for a wide range of purposes. In this review, by discussing the applicability of honey on Bombyx mori and beyond, the importance of honey for life sciences and related fields is spotlighted.

2021 ◽  
Vol 7 (1) ◽  
pp. 49-55
Author(s):  
Pritika Devi ◽  

Considering the wide therapeutic properties of metals, Tin is used as therapeutic agent to treat the wide range of diseases like Prameha, Krimi, Pandu, Mutrakricha, Shaweta Pradara, Rakta Pradara, Kalaibya since ancient times. To get precise quality of drug and efficacious results it is important to prepare the Ayurvedic drugs as per classical reference. The numbers of procedures were described by our Rasa Vaidyas for the preparation of Bhasma and so many methods are adopted or adopting our research scholars to prepare the Vanga Bhasma in their study work. Based on reported studies, there is lack of uniformity in pharmaceutical process is an evident. The researchers have adopted different methods and have shown slight variations in pharmaceutical methods, analytical evaluations. The present report encompasses all the different pharmaceutical methods adopted and their analytical outcomes. This present report expected to provide, new needs to researchers working in the area of pharmaceutico therapeutic investigations on Vanga Bhasma.


Neurosurgery ◽  
2021 ◽  
Author(s):  
David Bailey ◽  
Elias B Rizk

Abstract Hydrogen peroxide (H2O2) is a chemical with a wide range of applications. This includes its use in the medical field, in which its use has been ubiquitous but is most useful as an antiseptic and in achieving hemostasis. Neurosurgeons have been using H2O2 for well over a century, primarily for its hemostatic and antiseptic effects. This is in spite of the fact that the actual effectiveness of H2O2 as an antiseptic is questionable, and its use, in general, may be more dangerous than it appears. We review the application of H2O2 in medicine generally and, more specifically, in neurosurgery. This review outlines the reasoning behind the use of H2O2 as an antiseptic and details why it may not be as effective as one might think. We also detail its use as a hemostatic agent in neurosurgery, reviewing a number of techniques in which it has been useful in this role. Finally, we review the documented cases of complications associated with the use of H2O2 in neurosurgery. Ultimately, we conclude that the use of H2O2 in neurosurgery be reconsidered because of its lack of effectiveness as an antiseptic and potentially fatal complications.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
Marianna Martinello ◽  
Franco Mutinelli

Bee products have been used since ancient times both for their nutritional value and for a broad spectrum of therapeutic purposes. They are deemed to be a potential source of natural antioxidants that can counteract the effects of oxidative stress underlying the pathogenesis of many diseases. In view of the growing interest in using bioactive substances from natural sources to promote health and reduce the risk of developing certain illnesses, this review aims to update the current state of knowledge on the antioxidant capacity of bee products such as honey, pollen, propolis, beeswax, royal jelly and bee venom, and on the analytical methods used. The complex, variable composition of these products and the multitude of analytical methods used to study their antioxidant activities are responsible for the wide range of results reported by a plethora of available studies. This suggests the need to establish standardized methods to more efficiently evaluate the intrinsic antioxidant characteristics of these products and make the data obtained more comparable.


2021 ◽  
Vol 7 (8) ◽  
pp. 593
Author(s):  
Jingjing Wang ◽  
Alexander Berestetskiy ◽  
Qiongbo Hu

Destruxin A (DA), a hexa-cyclodepsipeptidic mycotoxin produced by the entomopathogenic fungus Metarhizium anisopliae, exhibits insecticidal activities in a wide range of pests and is known as an innate immunity inhibitor. However, its mechanism of action requires further investigation. In this research, the interactions of DA with the six aminoacyl tRNA synthetases (ARSs) of Bombyx mori, BmAlaRS, BmCysRS, BmMetRS, BmValRS, BmIleRS, and BmGluProRS, were analyzed. The six ARSs were expressed and purified. The BLI (biolayer interferometry) results indicated that DA binds these ARSs with the affinity indices (KD) of 10−4 to 10−5 M. The molecular docking suggested a similar interaction mode of DA with ARSs, whereby DA settled into a pocket through hydrogen bonds with Asn, Arg, His, Lys, and Tyr of ARSs. Furthermore, DA treatments decreased the contents of soluble protein and free amino acids in Bm12 cells, which suggested that DA impedes protein synthesis. Lastly, the ARSs in Bm12 cells were all downregulated by DA stress. This study sheds light on exploring and answering the molecular target of DA against target insects.


1970 ◽  
Vol 46 (4) ◽  
pp. 513-518 ◽  
Author(s):  
V Subhadradevi ◽  
K Asokkumar ◽  
M Umamaheswari ◽  
AT Sivashanmugam ◽  
JR Ushanandhini ◽  
...  

Since ancient times plant as sources of medicinal compounds have continued to play a dominant role in the maintenance of human health. To treat chronic and infectious diseases plants used in traditional medicine contain a wide range of ingredients. In this regard, Cassia auriculata L. (Caesalpiniaceae) is widely used in Ayurvedic medicine as a tonic, astringent and as a remedy for diabetes, conjunctivitis, ulcers, leprosy, skin and liver diseases. The aim of present study was to evaluate the antimicrobial activity of ethanolic extract of Cassia auriculata leaves and flowers (CALE & CAFE). CALE and CAFE exhibited broad spectrum antimicrobial activity against standard strains of Staphylococcus aureus, Escherichia coli and Bacillus subtilis and exhibited no antifungal activity against standard strains of Candida albicans and Aspergillus niger. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) was carried out for CALE and CAFE. The results obtained in the present study indicate that the CALE and CAFE can be a potential source of natural antimicrobial agents. Key words: Cassia auriculata; Antimicrobial activity; Agar well diffusion method. DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9600 BJSIR 2011; 46(4): 513-518


2020 ◽  
Vol 15 (1) ◽  
pp. 711-720
Author(s):  
Janetta Niemann ◽  
Justyna Szwarc ◽  
Jan Bocianowski ◽  
Dorota Weigt ◽  
Marek Mrówczyński

AbstractRapeseed (Brassica napus) can be attacked by a wide range of pests, for example, cabbage root fly (Delia radicum) and cabbage aphid (Brevicoryne brassicae). One of the best methods of pest management is breeding for insect resistance in rapeseed. Wild genotypes of Brassicaceae and rapeseed cultivars can be used as a source of resistance. In 2017, 2018, and 2019, field trials were performed to assess the level of resistance to D. radicum and B. brassicae within 53 registered rapeseed cultivars and 31 interspecific hybrid combinations originating from the resources of the Department of Genetics and Plant Breeding of Poznań University of Life Sciences (PULS). The level of resistance varied among genotypes and years. Only one hybrid combination and two B. napus cultivars maintained high level of resistance in all tested years, i.e., B. napus cv. Jet Neuf × B. carinata – PI 649096, Galileus, and Markolo. The results of this research indicate that resistance to insects is present in Brassicaceae family and can be transferred to rapeseed cultivars. The importance of continuous improvement of rapeseed pest resistance and the search for new sources of resistance is discussed; furthermore, plans for future investigations are presented.


Author(s):  
Rohit Rastogi ◽  
Mamta Saxena ◽  
Mayank Gupta ◽  
Akshit Rajan Rastogi ◽  
Pradeep Kumar ◽  
...  

From ancient times, humans are striving for being healthy and to live with mental peace with family and society. In the previous centuries also, some manmade and mostly natural disasters have disturbed the pace of human life. There have been times when the whole human race has been in terror, danger, and utmost worry. The electrical gadgets also have made the human life comfortable, but also machines have dominated its consciousness. The stress, aggression, depression, and many more issues are also showing presence in all our lives. The chapter is a trial to establish the effect of yagna and mantra science over human calmness and its effect on human health irrespective to gender and age. The article also elaborates the effect of Sanskrit sound and mantra chanting on emission of radiations from electronic gadgets. It also presents the effect of spiritual practices on the human body and soul after the terror, stress, grief created due to COVID-19.


2019 ◽  
Author(s):  
Aleksandar Vještica ◽  
Magdalena Marek ◽  
Pedro N’kosi ◽  
Laura Merlini ◽  
Gaowen Liu ◽  
...  

AbstractSchizosaccharomyces pombe is a widely used model organism that resembles higher eukaryotes in many aspects of cell physiology. Its popularity as an experimental system partially stems from the ease of genetic manipulations, where the innate homology-targeted repair is exploited to precisely edit the genome. While vectors to incorporate exogenous sequences into the chromosomes are available, most are poorly characterized. Here we show that commonly used fission yeast vectors, which upon integration produce repetitive genomic regions, yield unstable genomic loci. We overcome this problem by designing a new series of Stable Integration Vectors (SIV) that target four different prototrophy genes. SIV produce non-repetitive, stable genomic loci and integrate predominantly as single copy. Additionally, we develop a set of complementary auxotrophic alleles that preclude false-positive integration events. We expand the vector series to include antibiotic resistance markers, promoters, fluorescent tags and terminators, and build a highly modular toolbox to introduce heterologous sequences. Finally, as proof of concept, we generate a large set of ready-to-use, fluorescent probes to mark organelles and cellular processes with a wide range of applications in fission yeast research.


2020 ◽  
Author(s):  
Deniz Durmusoglu ◽  
Ibrahim Al’Abri ◽  
Scott P. Collins ◽  
Chase Beisel ◽  
Nathan Crook

AbstractSaccharomyces boulardii is a widely used yeast probiotic which can counteract various gastrointestinal disorders1. As a relative of Saccharomyces cerevisiae, S. boulardii exhibits rapid growth and is easy to transform2 and thus represents a promising chassis for the engineered secretion of biomolecules. To establish S. boulardii as a platform for delivery of biomolecules to the mammalian gut, we measured the amount and variance in protein expression enabled by promoters, terminators, selective markers, and copy number control elements in this organism. These genetic elements were characterized in plasmidic and genomic contexts, revealing strategies for tunable control of gene expression and CRISPR-mediated genome editing in this strain. We then leveraged this set of genetic parts to combinatorially assemble pathways enabling a wide range of drug and vitamin titers. Finally, we measured S. boulardii’s residence time in the gastrointestinal tracts of germ-free and antibiotic-treated mice, revealing the relationships between dosing strategy and colonization level. This work establishes S. boulardii as a genetically tractable commensal fungus and provides a set of strategies for engineering S. boulardii to synthesize and deliver biomolecules during gut colonization.


Author(s):  
Pedro Pinto ◽  
Claudia A Ribeiro ◽  
Sumaiya Hoque ◽  
Ourida Hammouma ◽  
Hélène Leruste ◽  
...  

Cryptosporidium is comprised an apicomplexan parasitic protist, which infects a wide range of hosts, causing cryptosporidiosis. In cattle farms, the incidence of cryptosporidiosis results in high mortality in calves leading to considerable economic loss in the livestock industry. Infected animals may also act as a major reservoir of Cryptosporidium spp., in particular C. parvum, the most common cause of cryptosporidiosis in calves. This poses a significant risk to other farms via breeding centres, to trading of livestock and to human health. This study, funded by the Interreg-2-seas programme, is a part of a global project aimed at strategies to tackle cryptosporidiosis. To reach this target, it was essential to determine whether prevalence was dependent on the studied countries or if the issue was borderless. Indeed, C. parvum occurrence was assessed across dairy farms in certain regions of Belgium, France and the Netherlands. At the same time, the animal-to-animal transmission of the circulating C. parvum subtypes was studied. To accomplish this, 1084 faecal samples, corresponding to 57 dairy-farms from all three countries, were analysed. Well-established protocols amplifying the 18S rDNA and gp60 genes fragments, followed by DNA sequencing, were used for the detection and subtyping C. parvum; the DNA sequences obtained were further characterised using a combination of bioinformatics and phylogenetics methods. Our results show 25.7%, 24.9% and 20.8% prevalence of Cryptosporidium spp. in Belgium, France and the Netherlands respectively. Overall, 93% of the farms were Cryptosporidium positive. The gp60 subtyping demonstrated a significant number of the C. parvum positives belonged to the IIa allelic family, which has been also detected in humans. Consequently, this study highlights how widespread is C. parvum in dairy farms and endorses cattle as a major carrier of zoonotic C. parvum subtypes, which subsequently pose a significant threat to human health.


Sign in / Sign up

Export Citation Format

Share Document