scholarly journals Memristors Based on 2D Monolayer Materials

2021 ◽  
Author(s):  
Xiaohan Wu ◽  
Ruijing Ge ◽  
Deji Akinwande ◽  
Jack C. Lee

2D materials have been widely used in various applications due to their remarkable and distinct electronic, optical, mechanical and thermal properties. Memristive effect has been found in several 2D systems. This chapter focuses on the memristors based on 2D materials, e. g. monolayer transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN), as the active layer in vertical MIM (metal–insulator–metal) configuration. Resistive switching behavior under normal DC and pulse waveforms, and current-sweep and constant stress testing methods have been investigated. Unlike the filament model in conventional bulk oxide-based memristors, a new switching mechanism has been proposed with the assistance of metal ion diffusion, featuring conductive-point random access memory (CPRAM) characteristics. The use of 2D material devices in applications such as flexible non-volatile memory (NVM) and emerging zero-power radio frequency (RF) switch will be discussed.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4811 ◽  
Author(s):  
Mohammed Sedki ◽  
Ying Chen ◽  
Ashok Mulchandani

In recent years, field-effect transistors (FETs) have been very promising for biosensor applications due to their high sensitivity, real-time applicability, scalability, and prospect of integrating measurement system on a chip. Non-carbon 2D materials, such as transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), black phosphorus (BP), and metal oxides, are a group of new materials that have a huge potential in FET biosensor applications. In this work, we review the recent advances and remarkable studies of non-carbon 2D materials, in terms of their structures, preparations, properties and FET biosensor applications. We will also discuss the challenges facing non-carbon 2D materials-FET biosensors and their future perspectives.


MRS Advances ◽  
2016 ◽  
Vol 1 (59) ◽  
pp. 3915-3921 ◽  
Author(s):  
Mohammad Hossein Tahersima ◽  
Volker J. Sorger

ABSTRACTAtomically thin transition-metal dichalcogenides (TMD) hold promise for making ultrathin-film photovoltaic devices with a combination of excellent photo-absorption and mechanical flexibility. However, reported absorption for photovoltaic cells based on TMD materials is still just a few percent of the incident light due to their sub-wavelength thickness leading to low cell efficiencies. Here we discuss that taking advantage of the mechanical flexibility of two dimensional (2D) materials by rolling their Van der Waal heterostructures such as molybdenum disulfide (MoS2)/graphene (Gr)/hexagonal boron nitride (hBN) to a spiral solar cell, leads to strong light matter interaction allowing for solar absorptions up to 90%. The optical absorption of a 1 µm-long hetero-material spiral cell consisting of the aforementioned hetero stacks is about 50% stronger compared to a planar MoS2 cell of the same thickness; although the volumetric absorbing material ratio is only 6%. We anticipate these results to provide guidance for photonic structures that take advantage of the unique properties of 2D materials in solar energy conversion applications.


Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1314-1346
Author(s):  
I. Jénnifer Gómez ◽  
Nuria Alegret ◽  
Antonio Dominguez-Alfaro ◽  
Manuel Vázquez Vázquez Sulleiro

In recent years, 2D materials have been implemented in several applications due to their unique and unprecedented properties. Several examples can be named, from the very first, graphene, to transition-metal dichalcogenides (TMDs, e.g., MoS2), two-dimensional inorganic compounds (MXenes), hexagonal boron nitride (h-BN), or black phosphorus (BP). On the other hand, the accessible and low-cost 3D printers and design software converted the 3D printing methods into affordable fabrication tools worldwide. The implementation of this technique for the preparation of new composites based on 2D materials provides an excellent platform for next-generation technologies. This review focuses on the recent advances of 3D printing of the 2D materials family and its applications; the newly created printed materials demonstrated significant advances in sensors, biomedical, and electrical applications.


2021 ◽  
Vol 3 (1) ◽  
pp. 272-278
Author(s):  
Pilar G. Vianna ◽  
Aline dos S. Almeida ◽  
Rodrigo M. Gerosa ◽  
Dario A. Bahamon ◽  
Christiano J. S. de Matos

The scheme illustrates a monolayer transition-metal dichalcogenide on an epsilon-near-zero substrate. The substrate near-zero dielectric constant is used as the enhancement mechanism to maximize the SHG nonlinear effect on monolayer 2D materials.


Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 601
Author(s):  
Dinh-Tuan Nguyen ◽  
Hsiang-An Ting ◽  
Yen-Hsun Su ◽  
Mario Hofmann ◽  
Ya-Ping Hsieh

The success of van-der-Waals electronics, which combine large-scale-deposition capabilities with high device performance, relies on the efficient production of suitable 2D materials. Shear exfoliation of 2D materials’ flakes from bulk sources can generate 2D materials with low amounts of defects, but the production yield has been limited below industry requirements. Here, we introduce additive-assisted exfoliation (AAE) as an approach to significantly increase the efficiency of shear exfoliation and produce an exfoliation yield of 30%. By introducing micrometer-sized particles that do not exfoliate, the gap between rotor and stator was dynamically reduced to increase the achievable shear rate. This enhancement was applied to WS2 and MoS2 production, which represent two of the most promising 2D transition-metal dichalcogenides. Spectroscopic characterization and cascade centrifugation reveal a consistent and significant increase in 2D material concentrations across all thickness ranges. Thus, the produced WS2 films exhibit high thickness uniformity in the nanometer-scale and can open up new routes for 2D materials production towards future applications.


Nanoscale ◽  
2021 ◽  
Author(s):  
Conor Patrick Cullen ◽  
Cormac Ó Coileáin ◽  
John B McManus ◽  
Oliver Hartwig ◽  
David McCloskey ◽  
...  

Group-10 transition metal dichalcogenides (TMDs) are rising in prominence within the highly innovative field of 2D materials. While PtS2 has been investigated for potential electronic applications, due to its high...


2017 ◽  
Vol 29 (43) ◽  
Author(s):  
Vidya Kochat ◽  
Amey Apte ◽  
Jordan A. Hachtel ◽  
Hiroyuki Kumazoe ◽  
Aravind Krishnamoorthy ◽  
...  

2019 ◽  
Vol 116 (42) ◽  
pp. 20844-20849 ◽  
Author(s):  
Cong Su ◽  
Zongyou Yin ◽  
Qing-Bo Yan ◽  
Zegao Wang ◽  
Hongtao Lin ◽  
...  

Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T′-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.


Sign in / Sign up

Export Citation Format

Share Document