scholarly journals The Immune System of Mesothelioma Patients: A Window of Opportunity for Novel Immunotherapies

2021 ◽  
Author(s):  
Fabio Nicolini ◽  
Massimiliano Mazza

The interplay between the immune system and the pleural mesothelium is crucial both for the development of malignant pleural mesothelioma (MPM) and for the response of MPM patients to therapy. MPM is heavily infiltrated by several immune cell types which affect the progression of the disease. The presence of organized tertiary lymphoid structures (TLSs) witness the attempt to fight the disease in situ by adaptive immunity which is often suppressed by tumor expressed factors. In rare patients physiological, pharmacological or vaccine-induced immune response is efficient, rendering their plasma a valuable resource of anti-tumor immune cells and molecules. Of particular interest are human antibodies targeting antigens at the tumor cell surface. Here we review current knowledge regarding MPM immune infiltration, MPM immunotherapy and the harnessing of this response to identify novel biologics as biomarkers and therapeutics through innovative screening strategies.

2021 ◽  
Vol 14 ◽  
Author(s):  
Elise Liu ◽  
Léa Karpf ◽  
Delphine Bohl

Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.


2020 ◽  
Author(s):  
Lara R. Heij ◽  
Xiuxiang Tan ◽  
Jakob N. Kather ◽  
Jan M. Niehues ◽  
Shivan Sivakumar ◽  
...  

ABSTRACTBackgroundB cells and tertiary lymphoid structures (TLS) are reported to be important in the improvement of survival of cancer patients. These secondary lymphoid organs have been associated with the generation of an anti-tumor response. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types and the stromal architecture shapes the intratumoral heterogeneity. The stroma of PDAC is a complex system in which crosstalk takes place between cancer-associated fibroblasts, immune cells, endothelial cells and the cancer cells. Besides immune cells and fibroblasts, there is some limited data about the influence of nerve fibers on cancer progression.Patients and methodsNerve Fiber Density (NFD) was analysed in our cohort of 188 patients with Pancreatic Ductal Adenocarcinoma who underwent pancreatic surgery. We used immunohistochemistry and multiplex imaging to phenotype the immune cell infiltrate. The cell detection classifier measured distance from immune cell to cancer gland and with a heat map we could count TLS. By using Machine learning we were able to define the spatial distribution and counting Tertiary Lymphoid Structures.ResultsHigh NFD is significantly associated with prolonged overall survival (HR 1.676 (95%CI 1.126,2.495) for low vs. high NFD, p-value 0.0109). The immune cells surrounding the nerve fibers were phenotyped in B cells, T cells and dendritic follicular cells, matching a TLS. Here we show that small nerve fibers are located at the TLS in Pancreatic Cancer and a high Nerve Fiber Density combined with more than 5 TLS is associated with a better survival (HR 0.388 (95%CI 0.218, 0.689).ConclusionThe co-localization of small nerve fibers with TLS is a new finding which has not been described before. However the precise roles of these TLS and nerve fibers remains unknown. These findings unravel future pathways and has the potential to reach new directions into already existing targeted therapy.


2021 ◽  
Author(s):  
Lauren E Fuess ◽  
Daniel I Bolnick

Pathogenic infection is an important driver of many ecological processes. Furthermore, variability in immune function is an important driver of differential infection outcomes. New evidence would suggest that immune variation extends to broad cellular structure of immune systems. However, variability at such broad levels is traditionally difficult to detect in non-model systems. Here we leverage single cell transcriptomic approaches to document signatures of microevolution of immune system structure in a natural system, the three-spined stickleback (Gasterosteus aculeatus). We sampled nine adult fish from three populations with variability in resistance to a cestode parasite, Schistocephalus solidus, to create the first comprehensive immune cell atlas for G. aculeatus. Eight major immune cell types, corresponding to major vertebrate immune cells, were identified. We were also able to document significant variation in both abundance and expression profiles of the individual immune cell types, among the three populations of fish. This variability may contribute to observed variability in parasite susceptibility. Finally, we demonstrate that identified cell type markers can be used to reinterpret traditional transcriptomic data. Combined our study demonstrates the power of single cell sequencing to not only document evolutionary phenomena (i.e. microevolution of immune cells), but also increase the power of traditional transcriptomic datasets.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 101-101
Author(s):  
Barry J Bradford

Abstract Our understanding of the immune system emerged from the study of disease processes and the communication networks used by various cell types to respond to pathogens. As with many aspects of physiology, this initial view was colored by the techniques available at the time. With technical advances beginning in the 1990, research in sepsis and obesity began to identify critical interactions between the immune system and metabolism. Our current understanding of these interactions is informed by two active but largely distinct research communities. Many in the field of immunology are utilizing cellular metabolism tools to understand mitochondrial function and fuel use in response to activation of innate and adaptive immune cells, especially as these relate to cancer. From another vantage point, many metabolic physiologists are now seeking to understand the importance of tissue-resident immune cells and immune signaling molecules in metabolic homeostasis and pathologies. Beyond human health implications of recent findings, a number of immunometabolism insights have informed our understanding of livestock health. In inflammatory events, phagocytic cells are activated, and the dramatic increase in oxidative metabolism is driven primarily by glucose use. Metabolism of healthy animals is also influenced by secretions from immune cells. Studies in mice indicate that appropriate host/microbe interactions (balancing protection and tolerance) are mediated by a network of immune cell types in the gut, which is critical to both absorptive and barrier functions of the gut. Adipose tissue immune cells regulate lipolytic rate, insulin sensitivity, and perhaps whole-body inflammatory tone. Local immune cell impacts on metabolism of other organs, including the liver and pancreas, are also emerging. Immunity and metabolism are tightly interwoven, and the evolving understanding of these links may enable nutritional or pharmacological strategies to enhance resilience to disease and alter nutrient partitioning in livestock.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Hamza Hanieh

The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr), an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs) boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3,3′-diindolylmethane (DIM) prompts the differentiation of CD4+Foxp3+regulatory T cells (Tregs) and inhibits T helper (Th)-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.


2006 ◽  
Vol 84 (6) ◽  
pp. 832-843 ◽  
Author(s):  
Elena A. Ostrakhovitch ◽  
Shawn S.-C. Li

The signaling lymphocyte-activating molecule (SLAM) family immunoreceptors are expressed in a wide array of immune cells, including both T and B lymphocytes. By virtue of their ability to transduce tyrosine phosphorylation signals through the so-called ITSM (immunoreceptor tyrosine-based switch motif) sequences, they play an important part in regulating both innate and adaptive immune responses. The critical role of the SLAM immunoreceptors in mediating normal immune reactions was highlighted in recent findings that SAP, a SLAM-associated protein, modulates the activities of various immune cells through interactions with different members of the SLAM family expressed in these cells. Importantly, mutations or deletions of the sap gene in humans result in the X-linked lymphoproliferative syndrome. In this review, we summarize current knowledge and survey the latest developments in signal transduction events triggered by the activation of SLAM family receptors in different cell types.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 733 ◽  
Author(s):  
Bros ◽  
Haas ◽  
Moll ◽  
Grabbe

RhoA is a ubiquitously expressed cytoplasmic protein that belongs to the family of small GTPases. RhoA acts as a molecular switch that is activated in response to binding of chemokines, cytokines, and growth factors, and via mDia and the ROCK signaling cascade regulates the activation of cytoskeletal proteins, and other factors. This review aims to summarize our current knowledge on the role of RhoA as a general key regulator of immune cell differentiation and function. The contribution of RhoA for the primary functions of innate immune cell types, namely neutrophils, macrophages, and conventional dendritic cells (DC) to (i) get activated by pathogen-derived and endogenous danger signals, (ii) migrate to sites of infection and inflammation, and (iii) internalize pathogens has been fairly established. In activated DC, which constitute the most potent antigen-presenting cells of the immune system, RhoA is also important for the presentation of pathogen-derived antigen and the formation of an immunological synapse between DC and antigen-specific T cells as a prerequisite to induce adaptive T cell responses. In T cells and B cells as the effector cells of the adaptive immune system Rho signaling is pivotal for activation and migration. More recently, mutations of Rho and Rho-modulating factors have been identified to predispose for autoimmune diseases and as causative for hematopoietic malignancies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vikrant Rai ◽  
Megan B. Wood ◽  
Hao Feng ◽  
Nathan. M. Schabla ◽  
Shu Tu ◽  
...  

Abstract Cells of the immune system are present in the adult cochlea and respond to damage caused by noise exposure. However, the types of immune cells involved and their locations within the cochlea are unclear. We used flow cytometry and immunostaining to reveal the heterogeneity of the immune cells in the cochlea and validated the presence of immune cell gene expression by analyzing existing single-cell RNA-sequencing (scRNAseq) data. We demonstrate that cell types of both the innate and adaptive immune system are present in the cochlea. In response to noise damage, immune cells increase in number. B, T, NK, and myeloid cells (macrophages and neutrophils) are the predominant immune cells present. Interestingly, immune cells appear to respond to noise damage by infiltrating the organ of Corti. Our studies highlight the need to further understand the role of these immune cells within the cochlea after noise exposure.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 111
Author(s):  
Mousumi Mahapatro ◽  
Lena Erkert ◽  
Christoph Becker

Cytokines are small proteins that are secreted by a vast majority of cell types in the gut. They not only establish cell-to-cell interactions and facilitate cellular signaling, but also regulate both innate and adaptive immune responses, thereby playing a central role in genetic, inflammatory, and infectious diseases of the gut. Both, immune cells and gut epithelial cells, play important roles in intestinal disease development. The epithelium is located in between the mucosal immune system and the gut microbiome. It not only establishes an efficient barrier against gut microbes, but it also signals information from the gut lumen and its composition to the immune cell compartment. Communication across the epithelial cell layer also occurs in the other direction. Intestinal epithelial cells respond to immune cell cytokines and their response influences and shapes the microbial community within the gut lumen. Thus, the epithelium should be seen as a translator or a moderator between the microbiota and the mucosal immune system. Proper communication across the epithelium seems to be a key to gut homeostasis. Indeed, current genome-wide association studies for intestinal disorders have identified several disease susceptibility loci, which map cytokine signatures and their related signaling genes. A thorough understanding of this tightly regulated cytokine signaling network is crucial. The main objective of this review was to shed light on how cytokines can orchestrate epithelial functions such as proliferation, cell death, permeability, microbe interaction, and barrier maintenance, thereby safeguarding host health. In addition, cytokine-mediated therapy for inflammation and cancer are discussed.


2019 ◽  
Vol 20 (8) ◽  
pp. 799-816 ◽  
Author(s):  
Yue Qiu ◽  
Guo-wei Tu ◽  
Min-jie Ju ◽  
Cheng Yang ◽  
Zhe Luo

Sepsis, which is a highly heterogeneous syndrome, can result in death as a consequence of a systemic inflammatory response syndrome. The activation and regulation of the immune system play a key role in the initiation, development and prognosis of sepsis. Due to the different periods of sepsis when the objects investigated were incorporated, clinical trials often exhibit negative or even contrary results. Thus, in this review we aim to sort out the current knowledge in how immune cells play a role during sepsis.


Sign in / Sign up

Export Citation Format

Share Document