scholarly journals Influence of Skin-Contact Treatment on Aroma Profile of Malvasia Aromatica Wines in D.O. “Vinos de Madrid”

2021 ◽  
Author(s):  
Julia Crespo ◽  
Valeria Romero ◽  
Margarita García ◽  
Teresa Arroyo ◽  
Juan M. Cabellos

The effects of prefermentative cold skin-contact technique using Malvasia aromatica were studied as a first step to adapt to the climate change related effects in order to intensify the aroma potential of white wines of the D.O. “Vinos de Madrid” keeping the organoleptic characteristics of the region. Major volatile compounds were extracted by liquid–liquid extraction and quantified by GC-FID. Minor volatile compounds were determined by HS-SPME/GC–MS. Sensory analysis were also carried out to describe and quantify attributes of the wines. A total of 37 components were identified and quantified. Volatile components showed mixed behavior depending on the skin-contact time. Skin-contact for longer helps to enhance the floral character provided by some compounds contained in the skin, especially linalool and 2-phenyl etanol and were impact odorants of Malvasia aromatica wine based on odor activity values (OAVs).


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 75
Author(s):  
Alexandra Nanou ◽  
Athanasios Mallouchos ◽  
Efstathios Z. Panagou

Olives are characterized by a wide variety of volatile compounds, which are primarily products of microbial metabolism that contribute to the organoleptic characteristics of the final product and especially to its flavor. The volatilome in Spanish-style processed green olives of Conservolea and Halkidiki cultivars were analytically characterized. A solid phase micro-extraction (SPME) technique was used for the extraction of volatile components from the olive samples that were further identified and quantified by gas chromatography coupled to mass spectrometry (GC–MS). Eighty-eight (88) compounds were identified, including several aldehydes, ketones, acids, terpenes, but mainly esters and alcohols. Results showed that there were no significant differences in the qualitative composition of the volatile profiles between the two varieties. Acetic and propanoic acids, thymol, ethanol, 2-butanol, 1-propanol, ethyl acetate as well as ethyl propanoate were the most dominant compounds found in both cultivars. However, some quantitative differences were spotted between the two varieties regarding some of the identified volatile compounds. The quantity of 2-butanol was higher in the Halkidiki variety, while propanoic acid ethyl ester was found in higher amounts in the Conservolea variety. Furthermore, differences in the quantities of some volatile compounds over time were observed. Most of the identified compounds presented an increasing trend during storage.



Beverages ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 102 ◽  
Author(s):  
Pilar Rubio-Bretón ◽  
Teresa Garde-Cerdán ◽  
Juana Martínez

The use of oak fragments allows wine cellars to reduce costs and the length of wine aging compared to traditional aging in oak barrels in the winery. The main objective of this work was to study the effect of the use of oak fragments on the volatile, phenolic, and organoleptic characteristics of Tempranillo red wines, as a function of the contact time between the wood and the wine. The results showed important changes in the wines’ colorimetric parameters after two months of contact time. Extraction kinetics of volatile compounds from the wood was highest during the first month of contact for chips, variable for staves, and slower and continuous over time for barrels. Wines macerated with fragments showed the best quality in short periods of aging, while barrel-aged wines improved over the time they spent in the barrel. In addition, the results allowed an analytical discrimination between the wines aged with oak fragments and those aged in oak barrels, and between chips and staves, just as at the sensory level with triangular tasting tests. In conclusion, the use of oak fragments is a suitable practice for the production of red wines, which may be an appropriate option for wines destined to be aged for short periods.



1995 ◽  
Vol 43 (4) ◽  
pp. 981-983 ◽  
Author(s):  
Sophie Dautraix ◽  
Karin Gerola ◽  
Roger Guilluy ◽  
Jean-Louis Brazier ◽  
Anne Chateau ◽  
...  


OENO One ◽  
2018 ◽  
Vol 52 (4) ◽  
Author(s):  
Rubén DEL BARRIO GALÁN ◽  
Cristina ÚBEDA ◽  
Mariona GIL ◽  
Nathalie SIECZKOWKI ◽  
Álvaro PEÑA

Aim: The aims of this study were to (i) study the effect of different application dosages of a commercial specific inactivated dry yeast (SIDY) on several compounds (polysaccharides, phenolic and volatile compounds) and attributes (color parameters) related to the quality of white wines, and (ii) acquire better knowledge about the use of different dosages of SIDY in white wines with the objective to improve their quality.Methods and results: Three different dosages were applied (10, 20 and 40 g hL-1). Treated wines were followed after a contact time period of two months and after a bottle aging period of three months. Total phenolic content, color intensity, CIELab coordinates, polysaccharides, low molecular weight phenolic compounds and volatile compounds were evaluated.Conclusions: Higher dosages of this SIDY resulted in a greater release of polysaccharides into the wine. In parallel, a positive effect on the reduction or prevention of wine oxidation was observed due to the interaction with certain phenolic compounds. The application of the highest dosage seems to lead to an adsorption or retention effect of the major identified volatile compounds. This effect seems to be more evident after the contact time period than after the bottle storage period.Significance and impact of the study: This study can contribute to improve our knowledge on how applying different dosages of SIDY affects the physical and chemical quality of white wines.



2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Xungang Gu ◽  
Zhengzhu Zhang ◽  
Xiaochun Wan ◽  
Jingming Ning ◽  
Chengcheng Yao ◽  
...  

A simutaneous distillation extraction (SDE) combined GC method was constructed for determination of volatile flavor components in Pu-erh tea samples. Dichloromethane and ethyl decylate was employed as organic phase in SDE and internal standard in determination, respectively. Weakly polar DB-5 column was used to separate the volatile flavor components in GC, 10 of the components were quantitatively analyzed, and further confirmed by GC-MS. The recovery covered from 66.4%–109%, and repeatability expressed as RSD was in range of 1.44%–12.6%. SDE was most suitable for the extraction of the anlytes by comparing with steam distillation-liquid/liquid extraction and Soxhlet extraction. Commercially available Pu-erh tea samples, including Pu-erh raw tea and ripe tea, were analyzed by the constructed method. the high-volatile components, such as benzyl alcohol, linalool oxide, and linalool, were greatly rich in Pu-erh raw teas, while the contents of 1,2,3-Trimethoxylbenzene and 1,2,4-Trimethoxylbenzene were much high in Pu-erh ripe teas.



2020 ◽  
Vol 7 (1) ◽  
pp. 32-39
Author(s):  
Nur Hidayah Sazali ◽  
Tham Wei Jie ◽  
Nurul Yani Rahim

Background: The cost-effective and environmentally benign solvent of hydrophobic deep eutectic (DES) was prepared for the removal of Cu (II) from aqueous solution. Hydrophobic DES has been gaining increasing attention from researchers for the replacement of hazardous solvent consumption in liquid-liquid extraction (LLE). Objectives: To synthesize the hydrophobic DES and optimize the parameters for ligandless LLE using DES, and LLE with DES-LIG, respectively. Materials and Methods: The fatty acid-based DES was prepared using a mixture of capric acid (C10) and lauric acid (C12) as a potential solvent for the extraction of Cu (II). The DES was characterized via FT-IR, NMR, and TGA. The removal percentage of Cu (II) was compared between ligandless LLE and other conventional LLE techniques. DES was used as the solvent in the ligandless LLE, while 1,10-phenanathroline ligand with DES (DES-LIG) was used in the conventional LLE techniques. The optimized parameters such as pH, initial concentration, and contact time for Cu (II) removal were studied and analyzed using atomic absorption spectroscopy (AAS). Results and Discussion: The ligandless LLE with DES demonstrated the highest removal percentage of Cu (II) at optimum conditions of pH 8, initial concentration of 80 μg mL-1, and contact time of 45 minutes. Conclusion: The removal of Cu (II) was more effective in ligandless LLE using DES.



2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Daisuke Suzuki ◽  
Yuko Sato ◽  
Hiroshi Kamasaka ◽  
Takashi Kuriki ◽  
Hirotoshi Tamura

Abstract Volatile compounds in foods are a significant factor that affects food intake and preference. However, volatile components in edible oils are poorly understood due to a strong matrix effect. In this study, we developed a method of extracting volatile compounds from extra virgin coconut oil (EVCO) by means of oiling-out assisted liquid-liquid extraction (OA-LLE). Consequently, 44 aroma compounds were isolated and identified from only 5 g of EVCO. Various aroma compounds were detected in addition to δ-lactones. The ratio of the natural abundance of the enantiomers of δ-lactones in EVCO was also revealed. Compared with the conventional methods of solvent assisted flavor evaporation (SAFE) and head-space solid-phase micro extraction (HS-SPME), OA-LLE was able to isolate a wide range and large number of volatile compounds from EVCO without leaving oil residues. Therefore, isolating aroma compounds from edible oil based on the oiling-out effect should provide an innovative extraction method.



2020 ◽  
pp. 33-39
Author(s):  
Dejan Pljevljakušić ◽  
Zorica Drinić

Hydrolats are valuable co-products of the essential oil distillation process, whose volatile compounds can be quantified by various methods. In this paper, we have tried to estimate the liquid-liquid extraction cycle number threshold for volatile compounds quantification of lavandin (Lavandula x intermedia) hydrolat. For this purpose, ten consecutive hydrolat extractions with n-hexane were analyzed GC/MS with hexadecane (C16) as an internal standard and compared with the lavandin essential oil. The chemical composition of the lavandin hydrolat showed similarity with its essential oil to the great extent, while volatile compounds dissolved in hydrolat exclusively belonged to the class of oxygenated monoterpenes. The total amount of extracted compounds has been estimated to 2174.2 mg/L, where the most dominant compounds in lavandin hydrolat were cisand trans-furanoid linalool oxide (676.3 and 634.1 mg/L, respectively), followed by much smaller amounts of linalool, camphor, and 1,8-cineole (167.6, 157.0, and 148.2 mg/L, respectively). Cumulative recoveries of total compounds yield after the third, fifth, and eighth extractions were 88 %, 96 %, and 99 %, respectively. Combined fraction analysis confirmed that in the first 5 cycles more than 95 % of the total yield (from 10 cycles) of extracted volatile compounds can be collected. Based on the results of this study, for volatile compounds quantification in lavandin hydrolat, 5 cycles of n-hexane liquid-liquid extraction can be recommended.



Sign in / Sign up

Export Citation Format

Share Document