scholarly journals Epigenetics in Male Infertility

2021 ◽  
Author(s):  
Hayfa H. Hassani ◽  
Rakad M. Kh AL-Jumaily ◽  
Fadhel M. Lafta

Male infertility is a complex medical condition, in which epigenetic factors play an important role. Epigenetics has recently gained significant scientific attention since it has added a new dimension to genomic and proteomic research. As a mechanism for maintaining genomic integrity and controlling gene expression, epigenetic modifications hold a great promise in capturing the subtle, yet very important, regulatory elements that might drive normal and abnormal sperm functions. The sperm’s epigenome is known to be marked by constant changing over spermatogenesis, which is highly susceptible to be influenced by a wide spectrum of environmental stimuli. Recently, epigenetic aberrations have been recognized as one of the causes of idiopathic male infertility. Recent advances in technology have enabled humans to study epigenetics role in male infertility.

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1534
Author(s):  
Evangelos N. Symeonidis ◽  
Evangelini Evgeni ◽  
Vasileios Palapelas ◽  
Dimitra Koumasi ◽  
Nikolaos Pyrgidis ◽  
...  

Male infertility, a relatively common and multifactorial medical condition, affects approximately 15% of couples globally. Based on WHO estimates, a staggering 190 million people struggle with this health condition, and male factor is the sole or contributing factor in roughly 20–50% of these cases. Nowadays, urologists are confronted with a wide spectrum of conditions ranging from the typical infertile male to more complex cases of either unexplained or idiopathic male infertility, requiring a specific patient-tailored diagnostic approach and management. Strikingly enough, no identifiable cause in routine workup can be found in 30% to 50% of infertile males. The medical term male oxidative stress infertility (MOSI) was recently coined to describe infertile men with abnormal sperm parameters and oxidative stress (OS), including those previously classified as having idiopathic infertility. OS is a critical component of male infertility, entailing an imbalance between reactive oxygen species (ROS) and antioxidants. ROS abundance has been implicated in sperm abnormalities, while the exact impact on fertilization and pregnancy has long been a subject of considerable debate. In an attempt to counteract the deleterious effects of OS, urologists resorted to antioxidant supplementation. Mounting evidence indicates that indiscriminate consumption of antioxidants has led in some cases to sperm cell damage through a reductive-stress-induced state. The “antioxidant paradox”, one of the biggest andrological challenges, remains a lurking danger that needs to be carefully avoided and thoroughly investigated. For that reason, oxidation-reduction potential (ORP) emerged as a viable ancillary tool to basic semen analysis, measuring the overall balance between oxidants and antioxidants (reductants). A novel biomarker, the Male infertility Oxidative System (MiOXSYS®), is a paradigm shift towards that goal, offering a quantification of OS via a quick, reliable, and reproducible measurement of the ORP. Moderation or “Μέτρον” according to the ancient Greeks is the key to successfully safeguarding redox balance, with MiOXSYS® earnestly claiming its position as a guarantor of homeostasis in the intracellular redox milieu. In the present paper, we aim to offer a narrative summary of evidence relevant to redox regulation in male reproduction, analyze the impact of OS and reductive stress on sperm function, and shed light on the “antioxidant paradox” phenomenon. Finally, we examine the most up-to-date scientific literature regarding ORP and its measurement by the recently developed MiOXSYS® assay.


Author(s):  
Wanwen Zeng ◽  
Yong Wang ◽  
Rui Jiang

Abstract Motivation Interactions among cis-regulatory elements such as enhancers and promoters are main driving forces shaping context-specific chromatin structure and gene expression. Although there have been computational methods for predicting gene expression from genomic and epigenomic information, most of them neglect long-range enhancer–promoter interactions, due to the difficulty in precisely linking regulatory enhancers to target genes. Recently, HiChIP, a novel high-throughput experimental approach, has generated comprehensive data on high-resolution interactions between promoters and distal enhancers. Moreover, plenty of studies suggest that deep learning achieves state-of-the-art performance in epigenomic signal prediction, and thus promoting the understanding of regulatory elements. In consideration of these two factors, we integrate proximal promoter sequences and HiChIP distal enhancer–promoter interactions to accurately predict gene expression. Results We propose DeepExpression, a densely connected convolutional neural network, to predict gene expression using both promoter sequences and enhancer–promoter interactions. We demonstrate that our model consistently outperforms baseline methods, not only in the classification of binary gene expression status but also in regression of continuous gene expression levels, in both cross-validation experiments and cross-cell line predictions. We show that the sequential promoter information is more informative than the experimental enhancer information; meanwhile, the enhancer–promoter interactions within ±100 kbp around the TSS of a gene are most beneficial. We finally visualize motifs in both promoter and enhancer regions and show the match of identified sequence signatures with known motifs. We expect to see a wide spectrum of applications using HiChIP data in deciphering the mechanism of gene regulation. Availability and implementation DeepExpression is freely available at https://github.com/wanwenzeng/DeepExpression. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Author(s):  
Wanwen Zeng ◽  
Yong Wang ◽  
Rui Jiang

AbstractMotivationInteractions among such cis-regulatory elements as enhancers and promoters are main driving forces shaping context-specific chromatin structure and gene expression. Although there have been computational methods for predicting gene expression from genomic and epigenomic information, most of them overlook long-range enhancer-promoter interactions, due to the difficulty in precisely linking regulatory enhancers to target genes. Recently, a novel high-throughput experimental approach named HiChIP has been developed and generating comprehensive data on high-resolution interactions between promoters and distal enhancers. On the other hand, plenty of studies have suggested that deep learning achieves state-of-the-art performance in epigenomic signal prediction, and thus promoting the understanding of regulatory elements. In consideration of these two factors, we integrate proximal promoter sequences and HiChIP distal enhancer-promoter interactions to accurately model gene expression.ResultsWe propose DeepExpression, a densely connected convolutional neural network to predict gene expression using both promoter sequences and enhancer-promoter interactions. We demonstrate that our model consistently outperforms baseline methods not only in the classification of binary gene expression status but also in the regression of continuous gene expression levels, in both cross-validation experiments and cross-cell lines predictions. We show that sequential promoter information is more informative than experimental enhancer information while enhancer-promoter interactions are most beneficial from those within ±100 kbp around the TSS of a gene. We finally visualize motifs in both promoter and enhancer regions and show the match of identified sequence signatures and known motifs. We expect to see a wide spectrum of applications using HiChIP data in deciphering the mechanism of gene regulation.AvailabilityDeepExpression is freely available at https://github.com/wanwenzeng/[email protected], [email protected] informationSupplementary data are available at Bioinformatics online.


2020 ◽  
Vol 26 ◽  
Author(s):  
Abdulqader Fadhil Abed ◽  
Yazun Bashir Jarrar ◽  
Hamzeh J Al-Ameer ◽  
Wajdy Al-Awaida ◽  
Su-Jun Lee

Background: Oxandrolone is a synthetic testosterone analogue that is widely used among bodybuilders and athletes. However, oxandrolone causes male infertility. Recently, it was found that metformin reduces the risk of infertility associated with diabetes mellitus. Aim: This study aimed to investigate the protective effects of metformin against oxandrolone-induced infertility in male rats. Methods: Rats continuously received one of four treatments (n=7) over 14 days: control DMSO administration, oxandrolone administration, metformin administration, or co-administration of oxandrolone and metformin. Doses were equivalent to those used for human treatment. Subsequently, testicular and blood samples were collected for morphological, biochemical, and histological examination. In addition, gene expression of the testosterone synthesizing enzyme CYP11A1 was analyzed in the testes using RT-PCR. Results: Oxandrolone administration induced male infertility by significantly reducing relative weights of testes by 48%, sperm count by 82%, and serum testosterone levels by 96% (ANOVA, P value < 0.05). In addition, histological examination determined that oxandrolone caused spermatogenic arrest which was associated with 2-fold downregulation of testicular CYP11A1 gene expression. However, co-administration of metformin with oxandrolone significantly ameliorated toxicological alterations induced by oxandrolone exposure (ANOVA, P value < 0.05). Conclusion: Metformin administration protected against oxandrolone-induced infertility in male rats. Further clinical studies are needed to confirm the protective effect of metformin against oxandrolone-induced infertility among athletes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

AbstractChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.


2021 ◽  
Author(s):  
Arjun Khakhar ◽  
Cecily Wang ◽  
Ryan Swanson ◽  
Sydney Stokke ◽  
Furva Rizvi ◽  
...  

Abstract Synthetic transcription factors have great promise as tools to help elucidate relationships between gene expression and phenotype by allowing tunable alterations of gene expression without genomic alterations of the loci being studied. However, the years-long timescales, high cost, and technical skill associated with plant transformation have limited their use. In this work we developed a technology called VipariNama (ViN) in which vectors based on the Tobacco Rattle Virus (TRV) are used to rapidly deploy Cas9-based synthetic transcription factors and reprogram gene expression in planta. We demonstrate that ViN vectors can implement activation or repression of multiple genes systemically and persistently over several weeks in Nicotiana benthamiana, Arabidopsis (Arabidopsis thaliana), and tomato (Solanum lycopersicum). By exploring strategies including RNA scaffolding, viral vector ensembles, and viral engineering, we describe how the flexibility and efficacy of regulation can be improved. We also show how this transcriptional reprogramming can create predictable changes to metabolic phenotypes, such as gibberellin biosynthesis in N. benthamiana and anthocyanin accumulation in Arabidopsis, as well as developmental phenotypes, such as plant size in N. benthamiana, Arabidopsis, and tomato. These results demonstrate how ViN vector-based reprogramming of different aspects of gibberellin signaling can be used to engineer plant size in a range of plant species in a matter of weeks. In summary, VipariNama accelerates the timeline for generating phenotypes from over a year to just a few weeks, providing an attractive alternative to transgenesis for synthetic transcription factor-enabled hypothesis testing and crop engineering.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jonathan D. Licht ◽  
Richard L. Bennett

Abstract Background Epigenetic mechanisms regulate chromatin accessibility patterns that govern interaction of transcription machinery with genes and their cis-regulatory elements. Mutations that affect epigenetic mechanisms are common in cancer. Because epigenetic modifications are reversible many anticancer strategies targeting these mechanisms are currently under development and in clinical trials. Main body Here we review evidence suggesting that epigenetic therapeutics can deactivate immunosuppressive gene expression or reprogram tumor cells to activate antigen presentation mechanisms. In addition, the dysregulation of epigenetic mechanisms commonly observed in cancer may alter the immunogenicity of tumor cells and effectiveness of immunotherapies. Conclusions Therapeutics targeting epigenetic mechanisms may be helpful to counter immune evasion and improve the effectiveness of immunotherapies.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
José L Ruiz ◽  
Lisa C Ranford-Cartwright ◽  
Elena Gómez-Díaz

Abstract Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.


2021 ◽  
Vol 22 (5) ◽  
pp. 2599
Author(s):  
Mégane Collobert ◽  
Ozvan Bocher ◽  
Anaïs Le Nabec ◽  
Emmanuelle Génin ◽  
Claude Férec ◽  
...  

About 8% of the human genome is covered with candidate cis-regulatory elements (cCREs). Disruptions of CREs, described as “cis-ruptions” have been identified as being involved in various genetic diseases. Thanks to the development of chromatin conformation study techniques, several long-range cystic fibrosis transmembrane conductance regulator (CFTR) regulatory elements were identified, but the regulatory mechanisms of the CFTR gene have yet to be fully elucidated. The aim of this work is to improve our knowledge of the CFTR gene regulation, and to identity factors that could impact the CFTR gene expression, and potentially account for the variability of the clinical presentation of cystic fibrosis as well as CFTR-related disorders. Here, we apply the robust GWAS3D score to determine which of the CFTR introns could be involved in gene regulation. This approach highlights four particular CFTR introns of interest. Using reporter gene constructs in intestinal cells, we show that two new introns display strong cooperative effects in intestinal cells. Chromatin immunoprecipitation analyses further demonstrate fixation of transcription factors network. These results provide new insights into our understanding of the CFTR gene regulation and allow us to suggest a 3D CFTR locus structure in intestinal cells. A better understand of regulation mechanisms of the CFTR gene could elucidate cases of patients where the phenotype is not yet explained by the genotype. This would thus help in better diagnosis and therefore better management. These cis-acting regions may be a therapeutic challenge that could lead to the development of specific molecules capable of modulating gene expression in the future.


Sign in / Sign up

Export Citation Format

Share Document