scholarly journals Removal of Copper and Lead from Water in The Mariana Mining Disaster Using Biomass Banana Peel and Rice Husk

2021 ◽  
Author(s):  
Mayra Santos ◽  
Vitor Silva ◽  
Thainá Andrade ◽  
Tamise Aquino ◽  
Bruno Batista ◽  
...  

The dumping of the mining tailings dam from Mariana, Brazil released about 34 million mining tailings in the Doce river basin, containing many toxic metals. The biomasses of banana and rice were used as adsorbents in the removal of Cu (II) and Pb (II) metals from contaminated water. Quantification of metals was performed using NexION 300D PerkinElmer (USA) ICP-MS. The pH effect studies indicated that the adsorption analyzed in the present work did not undergo significant changes with the variation of the pH values, thus for both banana and rice the best adsorption capacity of Cu (II), 34.11 mg g−1 and 34.37 mg g−1, was at pH 5. For Pb (II), the highest adsorption capacity was also at pH 5 with 36.06 mg g−1 for banana and 36.04 mg g−1 for rice. There was a rapid adsorption where, in all cases in the first 30 minutes of adsorption, more than 60% of the metals had already been adsorbed. Finally, tests were carried out using real samples from Doce river contaminated by the metals under study due to the Mariana disaster. The biomasses presented excellent performance in Cu (II) and Pb (II) removal, reaching concentrations close to zero after adsorption process.

Author(s):  
Lin Ren ◽  
Xudong Zhao ◽  
Baosheng Liu ◽  
Hongliang Huang

Abstract Rapid removal of radioactive strontium from nuclear wastewater is of great significance for environment safety and human health. This work reported the effective adsorption of strontium ion in a stable dual-group metal-organic framework, Zr6(OH)14(BDC-(COOH)2)4(SO4)0.75 (Zr-BDC-COOH-SO4), which contains strontium-chelating groups (-COOH and SO4) and strongly ionizable group (-COOH). Zr-BDC-COOH-SO4 exhibits very rapid adsorption kinetics (<5 min) and a maximum adsorption capacity of 67.5 mg g−1. The adsorption behaviors can be well evaluated by pseudo-second-order model and Langmuir isotherm model. Further investigations indicate that the adsorption of Sr2+ in Zr-BDC-COOH-SO4 would not be interfered by solution pH and adsorption temperature obviously. Feasible regeneration of the adsorbent was also demonstrated through a simple elution method. Mechanism investigation suggests that free -COOH contributes to the rapid adsorption based on electrostatic interaction while introduction of -SO4 can enhance the adsorption capacity largely. Thus, these results suggest that Zr-BDC-COOH-SO4 might be a potential candidate for Sr2+ removal and introducing dual groups is an effective strategy for designing high-efficiency adsorbents.


SAINTIFIK ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 104-115
Author(s):  
Agusriyadin Agusriyadin

Penelitian ini bertujuan untuk menguji kemampuan AK dan AKPM dalam mengadsorpsi ion Cu (II), pengaruh parameter adsorpsi dan mekanisme adsorpsi. AK dan AKP Madsorben dibuat dari residu ampas kelapa. Adsorben dikarakterisasi dengan FTIR, SEM dan EDS. Pengaruh parameter adsorpsi seperti pH awal, dosis adsorben, waktu kontak dan konsentrasi ion Cu (II) awal diperiksa untuk menentukan kondisi optimum serapan tembaga (II). Ion Cu (II) yang teradsorpsi diukur berdasarkan pada konsentrasi Ion Cu (II) sebelum dan sesudah adsorpsi menggunakan metode AAS. Hasil karakterisasi menunjukkan bahwa struktur pori dan gugus fungsi tersedia pada permukaan adsorben. Menurut percobaan efek pH, kapasitas adsorpsi maksimum dicapai pada pH 7. Waktu kontak optimal dan konsentrasi tembaga awal (II) ditemukan masing-masing pada 120 menit dan 100 mg L-1. Data eksperimental sesuai dengan model kinetik orde dua orde dua, dan Langmuir isoterm adsorpsi yang diperoleh paling sesuai dengan data adsorpsi. Kapasitas adsorpsi maksimum adsorben ditemukan menjadi 4,73 dan 6,46 mg g-1 pada kondisi optimal. The results of characterization showed that the pore structure and the functional groups were available on adsorbent surface. According to the pH effect experiments, the maximum adsorption capacity was achieved at pH 7. Optimum contact time and initial copper(II) concentration were found at 120 min and 100 mg L-1, respectively. The experimental data were comply with the pseudo-second-order kinetic model, and Langmuir adsorption isotherm obtained best fitted the adsorption data. The maximum adsorption capacity of the adsorbents was found to be 4.73 and 6.46 mg g-1 at optimum conditions.


KOVALEN ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 308-314
Author(s):  
Musafira Musafira ◽  
Nurfitrah M Adam ◽  
Dwi Juli Puspitasari

The investigation about the utilization of Banana peel (Musa paradisiaca) as biosorbent Rhodamine B dye has been done The purpose of this study was to determine the maximum contact time and to determine the adsorption capacity of kepok banana peel. Completely randomized design (CRD) was used in this research with two variables (the contact time and Rhodamine B concentration. Both variables were done in five levels i.e 10, 30, 60, 90, and 120 min and 2, 4, 6, 8 and 10 ppm respectively. The result showed that the maximum concentration of banana peel in adsorbing Rhodamine B was 6 ppm with 120 of contact time, and Rhodamine B adsorption capacity was  4.55mg/g. Keywords: Banana peel, Rhodamine B, biosorbent


1994 ◽  
Vol 30 (9) ◽  
pp. 191-197 ◽  
Author(s):  
R. Leyva Ramos ◽  
A. Juarez Martinez ◽  
R. M. Guerrero Coronado

The adsorption isotherm of chromium (VI) on activated carbon was obtained in a batch adsorber. The experimental adsorption data were fitted reasonably well to the Freundlich isotherm. The effect of pH on the adsorption isotherm was investigated at pH values of 4, 6, 7, 8, 10 and 12. It was found that at pH < 6, Cr(VI) was adsorbed and reduced to Cr(III) by the catalytic action of the carbon and that at pH ≥ 12, Cr(VI) was not adsorbed on activated carbon. Maximum adsorption capacity was observed at pH 6 and the adsorption capacity was diminished about 17 times by increasing the pH from 6 to 10. The pH effect was attributed to the different complexes that Cr(VI) can form in aqueous solution. The adsorption isotherm was also affected by the temperature since the adsorption capacity was increased by raising the temperature from 25 to 40°C. It was concluded that Cr(VI) was adsorbed significantly on activated carbon at pH 6 and that the adsorption capacity was greatly dependent upon pH.


Author(s):  
Andréa Zhouri ◽  
Raquel Oliveira ◽  
Marcos Zucarelli ◽  
Max Vasconcelos

Abstract This article analyses the policies of affectations in the context of the disaster which occurred in late 2015, when an iron ore tailings dam ruptured, affecting thousands of families in the Rio Doce River Valley, in the southeast of Brazil. The paper discusses the challenges faced by victims of the disaster, given that the ‘affected person’ as a social subject goes through a dramatic process of forced sociability, forged in political processes and bureaucratic demands which are alien to her/his world. As a consequence, the claims of victims are transmuted by the rationalities and techniques of corporate management, therefore disabled and re-codified by taxonomies which define forms of damage reparations, as well as modes of reconstruction of their way of life. From an anthropological perspective, we examine the struggle between the objectification imposed by the policy of affectation and the political subjectivation of actors compulsorily brought to contentious settings over the control of their own destiny.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sheng-Hsun Chaung ◽  
Pei-Fung Wu ◽  
Yu-Lin Kao ◽  
Weile Yan ◽  
Hsing-Lung Lien

The removal of dissolved sulfides in water and wastewater by nanoscale zero-valent iron (nZVI) was examined in the study. Both laboratory batch studies and a pilot test in a 50,000-pig farm were conducted. Laboratory studies indicated that the sulfide removal with nZVI was a function of pH where an increase in pH decreased removal rates. The pH effect on the sulfide removal with nZVI is attributed to the formation of FeS through the precipitation of Fe(II) and sulfide. The saturated adsorption capacities determined by the Langmuir model were 821.2, 486.3, and 359.7 mg/g at pH values 4, 7, and 12, respectively, for nZVI, largely higher than conventional adsorbents such as activated carbon and impregnated activated carbon. The surface characterization of sulfide-laden nZVI using XPS and TGA indicated the formation of iron sulfide, disulfide, and polysulfide that may account for the high adsorption capacity of nZVI towards sulfide. The pilot study showed the effectiveness of nZVI for sulfide removal; however, the adsorption capacity is almost 50 times less than that determined in the laboratory studies during the testing period of 30 d. The complexity of digested wastewater constituents may limit the effectiveness of nZVI. Microbial analysis suggested that the impact of nZVI on the change of microbial species distribution was relatively noticeable after the addition of nZVI.


2014 ◽  
Vol 13 (05n06) ◽  
pp. 1460009 ◽  
Author(s):  
Jianhua Cao ◽  
Dongzhou Li ◽  
Weihua Liang ◽  
Dayong Wu

Chitosan nanofiber membranes by electrospinning technique were used to remove Cu ( II ) from aqueous solution. The adsorption kinetics, equilibrium isotherms, and pH effect were investigated in batch experiments. The Langmuir isotherm and pseudo second-order kinetic models agree well with the experimental data. The chitosan nanofiber membranes are effective for Cu ( II ) adsorption at pH6. Results showed that the maximum adsorption capacity of the chitosan nanofiber membranes with Cu ( II ) is 118.62 mg g-1. The chitosan nanofiber membranes can be used as an effective adsorbent for the removal of Cu ( II ) in aqueous solution due to high adsorption capacity.


Author(s):  
Eider Bruno de LOURDES ◽  
Hernani Ciro SANTANA ◽  
Leandro Roberto de MACEDO ◽  
Franciele SILVA CORREIA ◽  
Thatiane CORDEIRO PACHECO ◽  
...  

2021 ◽  
Vol 324 ◽  
pp. 125-130
Author(s):  
Wara Dyah Pita Rengga ◽  
Bayu Triwibowo ◽  
Jovian Triyana Putra ◽  
Ardi Nugroho ◽  
Sri Kadarwati ◽  
...  

Cooking oil saturation due to frequent use for frying will result in a higher fatty acid content. Activated carbon made from the banana peel (Musa acuminata) with micro-mesoporous specifications can absorb free fatty acids. Banana peels are pyrolyzed into charcoal then activated alkaline at a temperature of 650°C. Then the activated carbon is washed and mashed to obtain activated carbon powder as an adsorbent by batch. FTIR carried out adsorption analysis on cooking oil to reduce carboxylic acid in used cooking oil. The regeneration process is carried out using surfactants to save on the use of necessary materials so that they need to be recycled. The experimental results based on isothermic equilibrium show that the Freundlich model can describe the adsorption process well at 28°C with a maximum adsorption capacity of 10 mg/g. The lifespan of activated carbon can only be extended once regeneration, reaching an adsorption capacity of 65% of fresh activated carbon's ability.


2013 ◽  
Vol 779-780 ◽  
pp. 195-200 ◽  
Author(s):  
Bo Liang ◽  
Min Li ◽  
Jie Shang

The recombinant Saccharomyces cerevisiae expressing human hepatic metallothionein (MT) was constructed for biosorption of cadmium (II). The gene sequence of mt was modified for codon preference of S. cerevisiae and synthesized using chemical method. The maximal biosorption capability of cadmium compounds Cd2+ of the recombinant increased more than 25.8% compared with the control. For MT-expressed recombinant strains, a rapid adsorption occurred within the first 30 min with a significant level of Cd2+ (55.75mg/g). For comparison, S. cerevisiae cells reach its maximal Cd2+ adsorption capacity (45.02 mg/g) until 2h. Furthermore, recombinant strain were able to withstand the toxicity of Cd2+ and grow. The results indicated that recombinant should be useful in enhancement the tolerance and biosorption of cadmium in practice.


Sign in / Sign up

Export Citation Format

Share Document