scholarly journals Impacts of Environmental Parameters on the Infectivity of Freshwater Snail

2021 ◽  
Author(s):  
Wolyu Korma Erkano

The successful transmission of the infective stage of the parasite (miracidia) depends on different factors. These free-living stages miracidia rely on their own stored energy and are directly exposed to environmental factors including disturbance resulting from pollution and human activities. There are different environmental factors that affect the cercarial infection of the snail. These include pH, temperature, salinity, dissolved oxygen, water hardness, habitat conditions, presence of predators and competitors, etc. Each of these factors may increase or decrease the freshwater snail’s infectivity. The more hydrogen ion concentration in the aquatic habitat could have an effect on the maturation and physiology of the parasitic stage (miracidia), leading to impaired survival and reduced infectivity. In contrast, high temperature increases snail infectivity. While low dissolved oxygen in the aquatic environment results in low snail infectivity. Regarding the presence of predators can result in low snail infectivity by consuming the schistosome egg and the snails themselves. Total hardness also had a negative impact on the prevalence of snail infection. The hardness of the water results in the shell hardening of snails subsequently leads to low infection of snail by miracidia.

2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Badusha M. ◽  
Santhosh S

The hydro geochemical features of Neyyar River for a period of one year from May 2015 to April 2016 were analyzed. Six sampling sites were fixed considering physiography and present landuse pattern of the river basin. The residents in the drainage basin are primarily responsible for framing a better landuse and thereby maintain a good water and sediment regime. Geospatial pattern of the present landuse of the study area indicated that the sustainability of this river ecosystem is in danger due to unscientific landuse practices, which is reflected in the river quality as well. The parameters such as hydrogen ion concentration, electrical conductivity, chloride, Biological Oxygen Demand, total hardness and sulphate of river water and Organic Carbon of river bed sediments were analyzed in this study. The overall analysis shows that the highland areas are characterized by better quality of water together with low organic carbon, which is mainly due to better landuse and minimal reclamation. The midland and lowland areas are characterized by poor quality of water with high organic carbon, which is due to high anthropogenic activities and maximum pollutants associated with the region together with the alteration in landuse from a traditional eco-friendly pattern to a severely polluted current pattern.


Author(s):  
A. B. Shashmurina ◽  
O. L. Mishutina ◽  
V. R. Shashmurina

Relevance. Dental caries is a leading dental disease in children. Aim – to study the quality of drinking water in Smolensk and its region to provide evidence for implementing dental caries preventive measures in children.Materials and methods. We took tap water samples from ten water intake points in seven districts of Smolensk and six Smolensk regions. An accredited testing laboratory of the Center for Hygiene and Epidemiology in the Smolensk Region carried out water chemical analysis. The study analyzed standard parameters of drinking water quality: pH 6.5-8.5, fluoride content 0.60-1.2 mg/l; water hardness 7.0-9.0 (Sanitary Regulations and Standards 2.1.4.1116-02). The parameter was considered normal if its 95% confidence interval was within the reference range.Results. In Smolensk, the hydrogen ion concentration in centralized drinking water supply systems is within normal limits and amounts to 7.39 (95% CI: 7.32-7.46; р < 0,05) pH units. The mean fluoride concentration in the Smolensk water is 0.19 (95% CI: 0.14-0.23; р < 0,05) mg/l, which is below the normal range. In most Smolensk districts, water hardness is within normal limits, 8.21 mmol/l (95% CI: 7.03-9.39; р < 0,05). However, the upper limit of the confidence interval of 9.39 mg/l and the maximum of 12.0 mg/l exceed the normal range. In the Smolensk region cities, the hydrogen ion concentration is 7.2 (95% CI: 7.02-7.38; р < 0,05) pH units in the centralized drinking water supply. The fluoride concentration in the Smolensk region water is 0.45 mg/l (95% CI: 0.23-0.68; р < 0,05), which demonstrates the fluoride deficiency in water. In the Smolensk region cities, mean water hardness is 6.66 mmol/l (95% CI: 6.00-7.03; р < 0,05), which is below the normal values. However, the CI upper limit of 7.03 mmol/l and the maximum of 7.05 mmol/l are within normal limits.Conclusions. The water of the centralized drinking water supply system in Smolensk and the Smolensk region is low in fluorides. Urgent community and individual preventive measures should be taken to expose children to fluoride.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1203
Author(s):  
Elżbieta Stanaszek-Tomal

The ability of microorganisms to degrade building materials depends on several factors. Biological corrosion occurs in close dependence with chemical and physical factors affecting microorganisms. The growth and development of microorganisms is stimulated by external stimuli, i.e., environmental factors. Microorganisms have a relatively large tolerance range for changes in environmental conditions. Under the right conditions, microorganisms thrive very well. The adverse effects may cause the inhibition of cell growth, damage, or lead to the death of the microorganism. Considering the impact of environmental factors on microorganisms, it is not possible to identify the most important of them. The result effect of overlapping factors determines the possibility of the growth of certain microorganisms. The main factors affecting the growth are temperature, humidity, hydrogen ion concentration in the environment, oxidoreductive potential, water activity in the environment, and hydrostatic pressure. This article provides a comprehensive overview of the factors causing biodeterioration. The influence of external/internal environment on the surface of cultural monuments made of mineral building materials, i.e., stone, concrete, mortar, etc., is presented.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4911
Author(s):  
Xuemei Zhang ◽  
Inge Hoff ◽  
Rabbira Garba Saba

Acid rain as an important environmental issue has a negative impact on bitumen performance, thereby shortening the service life of asphalt pavements. Thus, this research aims to investigate the response of bitumen to acid rain and its deterioration mechanism. For this purpose, the simulated acid rain was prepared to erode neat bitumen and short-term aged bitumen. The hydrogen ion concentration of the acid rain, and the morphological, physical, chemical, and rheological properties of the bitumen were evaluated by means of a pH meter, scanning electron microscopy, physical tests, Fourier transform infrared radiation with attenuated total reflectance, and dynamic shear rheometer. The results showed that bitumen properties were severely affected by acid rain, and the changes in bitumen properties were highly related to the erosion time, leading to a reduction in pH value by 0.2 of residual acid rain, rougher bitumen surface, and stiffer bitumen with more oxygen-containing functional groups and fewer carbonyl acid groups (around 10% decrement) after 90 days erosion. These changes contributed to two deterioration mechanisms: oxidation and dissolution of carbonyl acid. Oxidation and dissolution are, respectively, the dominant actions for neat bitumen and aged bitumen during the erosion process, which eventually leads to various responses to acid rain.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Asif Naseem Rai ◽  
Asmat Ullah ◽  
Jibran Haider

During the present investigation, the 96-hr LC50 and lethal concentrations of copper and cobalt for Tilapia nilotica were determined under controlled laboratory conditions at constant pH (7.25), total hardness (255 mgL-1 ) and temperature (30 °C). During acute toxicity studies, the physico-chemical parameters of water viz. temperature, pH, dissolved oxygen, electrical conductivity, carbon dioxide, total ammonia, calcium, sodium, magnesium, potassium and total hardness were monitored at 12-hr intervals for each test. Fish were exposed to different concentrations of copper and cobalt, separately, starting from zero with an increment of 0.05 and 0.5 mgL-1 . After 96-hr exposure of various concentrations of each metal, the fish mortality data were recorded with three replicates for each concentration. The 96-hr LC50 and lethal concentrations for each metal was computed by using Probit analyses method at 95% confidence interval. The 96-hr LC50 and lethal concentrations of copper for Tilapia nilotica were computed as 25.00±0.65 and 47.56±1.18 mg L-1 , respectively. However, the tolerance limits of fish for cobalt, in terms of 96-hr LC50 and lethal concentrations were calculated as 96.14±0.58 and 178.46±2.04, respectively. The tolerance limits of fish for both copper and cobalt varied significantly in terms of 96-hr LC50 and lethal concentrations. However, fish were significantly more tolerant to cobalt than that of copper. With the increase in metallic ion concentration of the test media (water), the level of ammonia and carbon dioxide increased, while that of dissolved oxygen decreased constantly. Total ammonia of the test media showed significantly direct relationship with carbon dioxide while the same remained significantly negative with dissolved oxygen indicating decrease in oxygen consumption by the fish under metallic ion stress, at different concentrations of copper and cobalt that enhanced the ammonia excretion by the fish.


2020 ◽  
pp. 1370-1382
Author(s):  
Saad Muhi Towfik ◽  
Adnan Jassam Hammadi

Zubair area is located at the extreme part of the south of Iraq and represents the southern part of the western desert, bounded by the north latitudes 30o05'-30o25' and east longitudes 47o30'- 47◦55'. Groundwater is a major natural resource in the study area because no perennial river exists. Groundwater from twenty wells in the study area were analyzed in order to determine some of chemical variables such as major cations (Ca+2, Mg+2 ,Na+ ,K+ ) and major anions (CL- ,SO4-2 ,HCO3- ,CO3-2 ,NO3-) along with several physical variables such as hydrogen ion concentration (pH) , total dissolved solids (TDS), and electrical conductivity (EC).  Hydro-chemical analysis showed that the groundwater of the study area is excessively mineralized, depending on the relation between EC and mineralization. Depending on total hardness (TH), all samples were with very hard water. High chloride concentration in the groundwater of the study area may be an indicator of pollution by sewage and agriculture fertilizers. The increase in flow length of the groundwater in the study area would change the water quality from bicarbonate to sulfate and chloride.   The predominant cations recorded are calcium and magnesium along with chloride from the anions, so that the water type is Ca-Mg-CL for most samples. The water wells studied are not suitable for drinking purposes of humans.  Depending on TDS and EC values, the water samples are not suitable for irrigation according to FAO 1997 classification. However, the results also revealed an excellent water class depending on Na percentage (Na%) and EC according to Todd 1980 classification for irrigation water. Also, an excellent water class (S1) for agriculture was recorded depending on SAR classification of Subramain, 2005.


1980 ◽  
Vol 11 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Jan Økland

In 50 lakes in south-eastern Norway hydrogen-ion concentration (pH) and total hardness (°dH) were measured in surface water in the 1950's and then once again 10 years later. Significant acidification was observed. In the total material average pH dropped from 7.0 to 6.8. The lakes were grouped into a low-total-hardness (0-l°dH) and a high-total-hardness group (&gt;l°dH). [l°dH = 10 mg »CaO«/l]. In the low-total-hardness group average pH had dropped from 6.6 to 6.3 and the average H+ concentration increased with 4.33. 10−7 mol/1. In the high-total-hardness group significant acidification could hardly be traced. The data confirm previous observations that also lakes which in previous years had pH close to the neutral point have become acidified. Total hardness showed no significant change. Acidification seems to occur most frequently in lakes with total hardness ⩽l°dH. Such lakes are present all over Norway and are dominant in many areas.


2020 ◽  
Vol 6 (8) ◽  
pp. 1534-1546
Author(s):  
Teba S. Hussain ◽  
Alaa H. Al-Fatlawi

The Main aim of the present study is to manufacture "Low- Cost Water Filter" for purification water and are designed for small water capacity, using readily available material and environmentally friendly such as kaolin clay, and jute fibers. A number of household treatment systems are readily available in the market. They are differing mainly in make and water purification mechanisms utilized. Most of the available household treatment devices are costly and hence there is a need to come up with cheap or affordable treatment technologies. This research was carried out to determine the efficiency of Kaolin-jute fibers filters in improving water impurities. Types of filters that were used during this study are: Filter 1, build with mixing ratio 85% kaolin clay, and 15% jute fibers, Filter 2: 80% kaolin clay, and 20% jute fibers, Filter 3, 75% kaolin clay, and 25% jute fibers. Effectiveness of these filters in decreasing chemical parameters like Hydrogen Ion Concentration (pH), Chloride (Cl), Calcium (Ca), Total Hardness (T.H), Magnesium (Mg), Alkalinity (ALK), Sulfates (SO4), Sodium (Na), and Potassium (K), were 8.7%, 71.54%, 70.5%, 70.5%, 80.7%, 77.9%, 85.5%, 71.64%, and 69.6% respectively. Kaolin-jute fibers filters can produce enough drinking and cooking water for a family of small members due to their flow rates. These filters may be considered for treating contaminated water at household scale in rural areas and places where water is taken directly from the source without treatment.


Sign in / Sign up

Export Citation Format

Share Document