scholarly journals ROS Regulation Mechanism for Mitigation of Abiotic Stress in Plants

2021 ◽  
Author(s):  
Asha Kumari ◽  
Mahendar Singh Bhinda ◽  
Sachin Sharma ◽  
Manoj Kumar Chitara ◽  
Ashim Debnath ◽  
...  

Plants respond to various stresses during their lifecycle among which abiotic stress is the most severe one comprising heat, cold, drought, salinity, flooding, etc. which take a heavy toll on crop yield worldwide in every corresponding year. ROS has a dual role in abiotic stress mechanisms where, at high levels, they are toxic to cells while at the same time, the same molecule can function as a signal transducer that activates a local as well as a systemic plant defense response against stress. The most common ROS species are Hydrogen peroxide (H2O2), Superoxide anions (O2-), Hydroxyl radicals (OH-), and Singlet oxygen (1O2) which are results of physiological metabolism often controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS generally accumulate in plants during abiotic and biotic stress conditions resulting in oxidative damage which ultimately leads to programmed cell death. Many ROS scavenging pathways have been well studied against stress responses. Through careful manipulation of ROS levels in plants, we can enhance stress tolerance in plants under unfavorable environmental conditions. This chapter presents an overview of ROS regulation in plants and the essential enzymes involved in the abiotic stress tolerance mechanisms which are thoroughly discussed below.

2021 ◽  
Vol 22 (13) ◽  
pp. 7235
Author(s):  
Md. Tahjib-Ul-Arif ◽  
Mst. Ishrat Zahan ◽  
Md. Masudul Karim ◽  
Shahin Imran ◽  
Charles T. Hunter ◽  
...  

Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA’s involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA’s position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Aditya Banerjee ◽  
Aryadeep Roychoudhury

WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of theWRKYgenes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.


2017 ◽  
Vol 18 (1) ◽  
pp. 200 ◽  
Author(s):  
Mirza Hasanuzzaman ◽  
Kamrun Nahar ◽  
Md. Hossain ◽  
Jubayer Mahmud ◽  
Anisur Rahman ◽  
...  

2012 ◽  
Vol 12 (1) ◽  
pp. 107 ◽  
Author(s):  
Gautam Kumar ◽  
Hemant Kushwaha ◽  
Vaishali Panjabi-Sabharwal ◽  
Sumita Kumari ◽  
Rohit Joshi ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10206
Author(s):  
Juanjuan Huang ◽  
Shengji Wang ◽  
Xingdou Wang ◽  
Yan Fan ◽  
Youzhi Han

Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven ERF genes related to abiotic stress tolerance and response were identified in plants of the Populus genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven ERF genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven ERF genes showed that they have multiple stress-related motifs and cis-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these ERFs determined by GO annotation supported this hypothesis. In addition, the spatio-temporal expression pattern of these seven ERFs, as detected using RT-qPCR and RNA-seq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in Populus abiotic stress tolerance and development process.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e111379 ◽  
Author(s):  
Amit Kumar Chaturvedi ◽  
Manish Kumar Patel ◽  
Avinash Mishra ◽  
Vivekanand Tiwari ◽  
Bhavanath Jha

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 788 ◽  
Author(s):  
Youngdae Yoon ◽  
Deok Hyun Seo ◽  
Hoyoon Shin ◽  
Hui Jin Kim ◽  
Chul Min Kim ◽  
...  

Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document