scholarly journals Preparation and In vitro Evaluation of Isoniazid-Containing Dex-HEMA-Co-PNIPAAm Nanogels

2015 ◽  
Vol 37 ◽  
pp. 55 ◽  
Author(s):  
Maryam Jafari ◽  
Babak Kaffashi

In this work, Dex-HEMA-Co-PNIPAAm nanogels containing Isoniazid antibiotic were made. Characteristic features of nanogels were studied by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and scanning electron microscopy (SEM). Drug loading capacity and entrapment efficiency were determined. In vitro drug release amount was estimated at room and body temperature. Biocompatibility of gels was investigated through cytotoxicity assay. Finally antimicrobial properties of synthesized gels were studied. It was shown from the experimental data that the nanogels size after drug loading increased about 1-2%. %Isoniazid loading and %entrapment efficiency were in the range of 15-22% and 37-48% respectively. After 10 days of degradation ca. 80% at 25ºC and ca. 90% at 37ºC of the nanogel structures were destructed. No significant toxic product produced while degradation and all nanogels depicted good biocompatibility. No antimicrobial features observed through the test condition against gram negative E Coli.

Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


2019 ◽  
Vol 19 (11) ◽  
pp. 7198-7204 ◽  
Author(s):  
Varun Prasath Padmanabhan ◽  
Ravichandran Kulandaivelu ◽  
Devendrapandi Santhana Panneer ◽  
S. Vivekananthan ◽  
Suresh Sagadevan ◽  
...  

In the present investigation, extremely fine Hydroxyapatite (HAP) powder was prepared through chemical precipitation technique under the influence of a nonionic surfactant (Brij 35-Polyoxyethylene lauryl ether). The samples were sintered at 800 °C to obtain highly pure HAP phase. The functional group present in the HAP powder was confirmed by using Fourier transform infra-red (FTIR) spectroscopy. The change in Phase transformation, the crystallite size and the percentage of crystallinity of the synthesized sample were studied by X-ray diffractometer technique. The Field Emission Scanning Electron Microscope (FESEM) and High-resolution transmission electron microscopy (HRTEM) were used for the structural analysis of porous rod-shaped HAP crystal. Further, drug loading and In Vitro leaching kinetics were conducted for antibiotics-ciproflaxin (CPF). Antimicrobial activity against S. aureus (Gram-positive bacterium) and E. coli (Gram-negative bacterium) was executed for pure HAP as well as for drug loaded HAP.


2014 ◽  
Vol 2 (5) ◽  
pp. 202-229
Author(s):  
Kumar Ganesh ◽  
Dhyani Archana ◽  
Kathiyal Preeti

The galacotsylated albumin nanoparticles were prepared for the selective delivery of Cimetidine to the asialoglycoprotein receptor (ASGP-R) which is particularly presents on mammalian hepatocytes. The albumin nanoparticles (NPs) were prepared by using desolvation method and efficiently conjugated with galactose. Various parameters such as particle size, % entrapment efficiency and drug loading efficiency, percentage yield, in vitro drug release, were determined. The size of nanoparticles (both plain and galactose coated) was found to be in range of 200-250 nm, and maximum drug payload was found to be 19.08% ± 1.10 .The maximum drug content was found to be 30.80% ± 0.3 and 27.09% ± 0.5 respectively in plain and galactose coated nanoparticles while the maximum entrapment efficiency was found to be 90.68% ± 0.5 and 91.75% ± 0.59 in plain and coated nanoparticles. It was also found that coating of nanoparticles increases the size of nanoparticles. From the in-vitro studies, it was concluded that increase in polymer concentration, decreases the drug releases from the nanoparticles. DOI: http://dx.doi.org/10.3329/ijpls.v2i5.17628 International Journal of Pharmaceutical and Life Sciences, Volume 2(5) Dec 2013: 202-229


Drug Research ◽  
2017 ◽  
Vol 67 (12) ◽  
pp. 698-704 ◽  
Author(s):  
Hossein Danafar ◽  
Ali Sharafi ◽  
Sonia Askarlou ◽  
Hamidreza Manjili

AbstractNatural products have been used for the treatment of various diseases such as cancer. Curcumin (CUR) and sulforaphane (SF) have anti-cancer effects, but their application is restricted because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an advanced delivery of SF and CUR with PEGylated gold coated Fe3O4 magnetic nanoparticles (PEGylated Fe3O4@Au NPs) to endorse SF and CUR maintenance as an effective and promising antitumor drugs. The structure of the synthesized nanocarrieris evaluated by, transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The results revealed that the size of NPs was 20 nm. They were mono-dispersed in water, with high drug-loading capacity and stability. CUR and SF were encapsulated into NPs with loading capacity of 16.32±0.023% and 15.74±0.015% and entrapment efficiency of 74.57±0.14% and 72.20±0.18% respectively. The in-vitro study of SF and CUR loaded PEGylated Fe3O4@Au NPs on human breast adenocarcinoma cell line (SK-BR-3) confirmed that cytotoxicity of SF and CUR can enhance when they are loaded on PEGylated Fe3O4@Au NPs in comparison to Free SF and void CUR. The results of flow cytometry and real-time PCR shown that nano-carriers can increase therapeutic effects of SF and CUR by apoptosis and necrosis induction as well as inhibiting of migration in SK-BR-3 cell line.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Marta Przybyslawska ◽  
Aleksandra Amelian ◽  
Katarzyna Winnicka

Abstract The objective of this study was to prepare ciprofloxacin (CIP) encapsulated poly-ε-caprolactone (PCL) microcapsules by the single emulsion oilin- water (o/w) solvent evaporation method. The obtained microcapsules were characterized for size, morphology, drug loading and entrapment efficiency. The physical state of microcapsules was determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). Storage stability, the in vitro drug release and mathematical modeling of drug release were also tested. It was found that obtained microcapsules had spherical shape and their size range was from 57.5 μm to 234.7 μm. The drug loading of microcapsules was from 1.72% to 11.02%. The optimal conditions of the encapsulation process include the drug/polymer ratio 2/1, using homogenizer for 5 min at 15000 rpm to disperse CIP in PCL solution and aqueous phase at pH 5.5. The results of CIP release study indicate that obtained microcapsules might be successfully used for designing sustained release dosage forms.


2015 ◽  
Vol 65 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Marta Szekalska ◽  
Aleksandra Amelian ◽  
Katarzyna Winnicka

Abstract The present study is aimed at formulation of alginate (ALG) microspheres with ranitidine (RNT) by the spray drying method. Obtained microspheres were characterized for particle size, surface morphology, entrapment efficiency, drug loading, in vitro drug release and zeta potential. Mucoadhesive properties were examined by a texture analyser and three types of adhesive layers - gelatine discs, mucin gel and porcine stomach mucosa. Microspheres showed a smooth surface with narrow particle size distribution and RNT loading of up to 70.9 %. All formulations possessed mucoadhesive properties and exhibited prolonged drug release according to the first-order kinetics. DSC reports showed that there was no interaction between RNT and ALG. Designed microspheres can be considered potential carriers of ranitidine with prolonged residence time in the stomach


2021 ◽  
Vol 11 ◽  
Author(s):  
Vaibhav Rajoriya ◽  
Varsha Kashaw ◽  
Sushil Kumar Kashaw

Objective: The current paper represents the development, optimization, and characterization of paclitaxel-loaded folate conjugated solid lipid nanoparticles (FA-SLNs). Methods: The ligand (FA-SLNs) conjugated and non-conjugated SLNs (PTX-SLNs) were prepared by hot homogenization method. Both of the formulations (FA-SLNs and PTX-SLNs) were optimized with various parameters i.e. drug loading, stirring time, stirring speed, particle size, and polydispersity index, and characterized. The in-vitro drug release study was performed in different pH environments by using the dialysis bag method. The surface morphology and particle size were determined through scanning electron micorscopy and Transmission Electron Microscopy respectively, The SLNs formulations were also evaluated for the stability study. Result: The particle size of PTX-SLNs and FA-SLNs was determined and found to be 190.1±1.9 and 231.3±2.3 nm respectively. The surface morphology of the SLNs indicates that the prepared formulations are round-shaped and show smooth surfaces. The TEM study indicated that particles were in the range of 100-300 nm. The entrapment efficiency and drug loading capacity of FA-SLNs were found to be 79.42±1.6% and 17.3±1.9%, respectively. In-vitro drug release study data, stated that the optimum drug release was found in an acidic environment at pH 4.0, that showed 94.21% drug release after 16 hours and it proves that optimized formulation FA-SLNs will gave the sustained and better release in tumor tissue that owing acidic environment because of the angiogenesis process. Conclusion: In this research paper, different formulation parameters, found to influence fabrication of drug into Solid lipid nanoparticles, were optimized for high entrapment efficiency and drug loading. The most important parameters were drug:lipid ratio, drug:polymer ratio and lipid: surfactant ratio. Higher in-vitro drug release was observed in pH 4 as compared to the pH 7.4. These result data concludes that FA-SLNs formulation was successfully prepared, optimized and characterized.


2016 ◽  
Vol 52 (22) ◽  
pp. 4128-4131 ◽  
Author(s):  
Linyi Bai ◽  
Soo Zeng Fiona Phua ◽  
Wei Qi Lim ◽  
Avijit Jana ◽  
Zhong Luo ◽  
...  

Two nanoscale covalent organic frameworks as drug carriers with good biocompatibility were developed, showing high drug loading capacity and sustained release in vitro.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 250
Author(s):  
Prashant Kesharwani ◽  
Shadab Md ◽  
Nabil A. Alhakamy ◽  
Khaled M. Hosny ◽  
Anzarul Haque

Azacitidine (AZA), an inhibitor of DNA methyltransferase, is a commonly recognized drug used in clinical treatment for myelodysplastic syndrome and breast cancer. Due to higher aqueous solubility and negative log P of AZA causes poor cancer cell permeation and controlled release. The objective of the present study was to formulate and optimize AZA-loaded liposome (AZA-LIPO) for breast cancer chemotherapy by using Box Behnken design (BBD) and in vitro evaluation using MCF-7 cells. AZA-LIPO were prepared using a thin film hydration technique and characterization study was performed by using FTIR and DSC. The prepared formulations were optimized using BBD and the optimized formulation was further subjected for particle size, surface charges, polydispersity index (PDI), drug loading, entrapment efficiency, TEM, XRD, in-vitro drug release and hemolytic toxicity. The mean particle size of optimized AZA-LIPO was 127 nm. Entrapment efficiency and drug loading of AZA-LIPO was found to be 85.2% ± 0.5 and 6.82 ± 1.6%, respectively. Further, in vitro drug release study showed preliminary burst release in 2 h followed by a sustained release for 36 h in phosphate buffer at different pH (4.0, 5.5, and 7.4) as compared to free drug. Drug release was found to be pH dependent, as the pH was increased, the drug release rate was found to be low. Time-dependent cell viability assay exhibited significant higher cell viability and higher internalization than free AZA in MCF-7 cells. AZA-LIPO were more effective than the free AZA in reducing Bcl2 expression, while increasing pro-apoptotic Bax and caspase-3 activity. The result showed that the formulated biocompatible AZA-LIPO nano-formulations may be used as an efficient anti-cancer drug delivery system for the treatment of breast cancer after establishing preclinical and clinical studies.


Sign in / Sign up

Export Citation Format

Share Document