Propeller Blade Pressure Distribution Due to Loading and Thickness Effects

1979 ◽  
Vol 23 (02) ◽  
pp. 89-107 ◽  
Author(s):  
S. Tsakonas ◽  
W. R. Jacobs ◽  
M. R. Ali

A theoretical approach is developed and a computational procedure adaptable to a high-speed digital computer is established for the evaluation of the blade pressure distribution of a marine propeller due to thickness and loading effects. The dual role of the blade thickness is considered. The contribution of the "non-planar thickness" to the propeller loading and pressure distribution and the effect of the "flow distortion thickness" are studied by means of the "thin body" approximation. The surface integral equation which relates the unknown loading to the known velocity distribution on the blades is solved by the mode approach in conjunction with the "lift operator" technique. The analysis treats both design and off-design conditions in steady-state and unsteady flows, and the proper chordwise modes are selected for each condition. The numerical solution yields the blade loading and resulting hydrodynamic forces and moments and blade bending moments, and, in addition, the blade pressure distributions on each blade face due to both loading and thickness effects, thus providing information necessary for the prediction of cavitation inception. Calculations have been performed for a set of three 3-bladed propellers of different EAR operating in a screen-generated wake, for comparison with experimental data.

1975 ◽  
Vol 19 (01) ◽  
pp. 44-56
Author(s):  
W. R. Jacobs ◽  
S. Tsakonas

Blade thickness plays a dual role, contributing to the lifting characteristics of the blade because of its nonplanar form as well as to its nonlifting characteristics due to the generation of a symmetrical flow disturbance. However, since the so-called "nonplanar thickness" has been shown to have little effect on the blade pressure distribution and thus presumably to have a negligible effect on the velocity and pressure fields around an operating propeller, the present investigation is limited to the so-called "symmetrical flow disturbance thickness." The effect of this thickness on the oscillatory velocity field around the propeller is studied by means of the "thin body" approach, where the blade section is represented by a source-sink distribution of strength proportional to the slope of the blade thickness distribution. A numerical procedure is devised and adapted to the CDC-6600 high-speed digital computer for the evaluation of the thickness effect on the velocity field. The total propeller-induced velocity field is then obtained by adding the computed velocity components due to thickness, with proper phase, to the results due to propeller loading calculated by means of the lifting-surface theory. Sets of calculations performed for a 3-blade propeller operating in a 3-cycle screen-generated wake and for a 5-blade propeller operating in a realistic hull wake reveal that the effect of thickness in forming the components of the resultant velocity varies from moderate to large, depending on the magnitude of the thickness distribution, on the location of the field point, and on the intensity of the nonuniformity of the inflow field.


2021 ◽  
Vol 11 (2) ◽  
pp. 784
Author(s):  
Zhenxu Sun ◽  
Shuanbao Yao ◽  
Lianyi Wei ◽  
Yongfang Yao ◽  
Guowei Yang

The structural design of the streamlined shape is the basis for high-speed train aerodynamic design. With use of the delayed detached-eddy simulation (DDES) method, the influence of four different structural types of the streamlined shape on aerodynamic performance and flow mechanism was investigated. These four designs were chosen elaborately, including a double-arch ellipsoid shape, a single-arch ellipsoid shape, a spindle shape with a front cowcatcher and a double-arch wide-flat shape. Two different running scenes, trains running in the open air or in crosswind conditions, were considered. Results reveal that when dealing with drag reduction of the whole train running in the open air, it needs to take into account how air resistance is distributed on both noses and then deal with them both rather than adjust only the head or the tail. An asymmetrical design is feasible with the head being a single-arch ellipsoid and the tail being a spindle with a front cowcatcher to achieve the minimum drag reduction. The single-arch ellipsoid design on both noses could aid in moderating the transverse amplitude of the side force on the tail resulting from the asymmetrical vortex structures in the flow field behind the tail. When crosswind is considered, the pressure distribution on the train surface becomes more disturbed, resulting in the increase of the side force and lift. The current study reveals that the double-arch wide-flat streamlined design helps to alleviate the side force and lift on both noses. The magnitude of side force on the head is 10 times as large as that on the tail while the lift on the head is slightly above that on the tail. Change of positions where flow separation takes place on the streamlined part is the main cause that leads to the opposite behaviors of pressure distribution on the head and on the tail. Under the influence of the ambient wind, flow separation occurs about distinct positions on the train surface and intricate vortices are generated at the leeward side, which add to the aerodynamic loads on the train in crosswind conditions. These results could help gain insight on choosing a most suitable streamlined shape under specific running conditions and acquiring a universal optimum nose shape as well.


1970 ◽  
Vol 14 (03) ◽  
pp. 181-194
Author(s):  
S. Tsakonas ◽  
W. R. Jacobs ◽  
M. R. Ali

The propeller-rudder interaction problem is studied by means of the unsteady-lifting- surface theory. Both surfaces of arbitrary geometry are immersed in a non-uniform flow- field (i.e., hull wake) of an ideal incompressible fluid. The boundary-value problem yields a pair of surface integral equations, the inversion of which is achieved by the so- called "generalized lift operator" technique, a new approach developed by the authors, in conjunction with the presently used "mode-collocation" method. The analysis demonstrates the mechanism of the interaction phenomenon by exhibiting the filtering effects of the propeller on the harmonic constituents of the wake which allow the rudder to be exposed only to the blade harmonic and multiples thereof. A numerical procedure adaptable to the CDC 6600 computer has been developed which furnishes information about (i) the steady and time-dependent pressure distribution on both lifting surfaces, and (ii) the resultant hydrodynamic forces and moments. A limited number of calculations exhibit the importance of some parameters such as axial clearance, number of blades, and harmonic components of the hull wake.


2021 ◽  
Vol 157 (A1) ◽  
Author(s):  
T Arnold ◽  
J Lavroff ◽  
M R Davis

Trim tabs form an important part of motion control systems on high-speed watercraft. By altering the pitch angle, significant improvements in propulsion efficiency can be achieved by reducing overall resistance. For a ship in heavy seas, trim tabs can also be used to reduce structural loads by changing the vessel orientation in response to encountered waves. In this study, trials have been conducted in the University of Tasmania hydraulics laboratory using a closed- circuit water tunnel to measure model scale trim tab forces. The model scale system replicates the stern tabs on the full- scale INCAT Tasmania 112 m high-speed wave-piercer catamaran. The model was designed for total lift force measurement and pressure tappings allowed for pressures to be measured at fixed locations on the underside of the hull and tab. This investigation examines the pressures at various flow velocities and tab deflection angles for the case of horizontal vessel trim. A simplified two-dimensional CFD model of the hull and tab has also been analysed using ANSYS CFX software. The results of model tests and CFD indicate that the maximum pressure occurs in the vicinity of the tab hinge and that the pressure distribution is long-tailed in the direction forward of the hinge. This accounts for the location of the resultant lift force, which is found to act forward of the tab hinge.


1951 ◽  
Vol 18 (1) ◽  
pp. 101-106
Author(s):  
J. T. Bergen ◽  
G. W. Scott

Abstract In the calendering, or rolling, of a plastic material in to sheet form by passing it between parallel rolls, hydrostatic pressure is exerted against the surface of the roll throughout the region of contact with the plastic mass. This pressure has been measured by means of a pressure-sensitive cylinder, inserted in the body of a 10-in-diam roll, together with high-speed oscillographic technique. The materials which were calendered consisted of a resin which exhibited flow properties characteristic of a viscous liquid, and several filled plastic compositions of commercial interest. Pressure maxima ranging up to 8000 psi were observed. Comparison of experimental results with theoretical expressions for pressure distribution, as given by several authors, indicates that the equation derived by Gaskell quite satisfactorily predicts the results for the case of the viscous liquid. The commercial plastics were found to exhibit pressure-distribution characteristics which were perceptibly different from those of the viscous liquid. Certain limitations of Gaskell’s treatment of nonviscous materials prevent its application to these experimental results.


1944 ◽  
Vol 48 (398) ◽  
pp. 45-48 ◽  
Author(s):  
A. Ferri

The experiments were carried out in the high speed wind tunnel at Guidonia on three brass spheres of 40, 60 and 80 mm. diameter, supported on rear spindles and on two steel cylinders of 15 and 30 mm. diameter respectively, which passed through the air jet.Both the total drag and pressure difference between the front stagnation point and a variable point at the rear were measured.The pressure distribution on similar models which could be rotated and which were provided with pressure holes was also determined.


1994 ◽  
pp. 23-43
Author(s):  
Mohd. Ramzan Mainal

Planing crafts have been the traditional solution to high speed at sea. However, the limitations on high speed planing hull forms in a seaway have led to a tremendous amount of work currently being carried out on hydrofoils, catamarans and hybrid crafts. Despite these facts, the warship, commercial and pleasure markets still show demands for planing crafts and many new designs appear every year. The objective of this paper is to develop a computational procedure for predicting the total resistance of hard chine planing hull forms, prior to model testing. The computer prediction is later validated with existing experimental results.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
E. L. Amromin

Abstract Experimental results and trends for cavitation inception and desinence behind orifices in microchannels are quite different from the data obtained during previous experiments in much larger facilities. The objective of this paper is to explain these differences via a numerical analysis. The employed computational procedure is divided into two parts. The first part is computation of an axisymmetric separated flow around the orifice. The second part is determination of characteristics of cavities appearing within separation zones. The provided analysis of the experimental data of other researchers pointed out two sources of the above-mentioned differences. First, for larger orifices, the cavities appear in the cores of drifting vortices. For such a situation, cavitation inception and desinence number increases with the inflow speed due to an impact of turbulence, but there is no such an increase for microbubbles with laminar flows. Second, because of the difficulty to measure the cavity pressure in microbubbles, cavitation number is usually defined with employment of the vapor pressure, and this leads to misinterpretation of the measurements and their trends.


Author(s):  
Benjamin Gallman ◽  
B. Terry Beck ◽  
Mohammad H. Hosni

Abstract While normally certain unwanted phenomena are to be avoided, cavitation has useful engineering applications. Specifically, it can be used as to create cooling potential in a novel non-vapor compression refrigeration process. Cavitation occurs when the pressure of the working fluid (compressed liquid) drops below the saturation pressure. Since the cavitation (flash) results in an abrupt reduction in temperature, the working fluid can take in energy as heat from the surroundings during cavitation, which results in a cooling potential (refrigeration). In a converging-diverging nozzle, as the fluid passes through the throat the pressure decreases. If the pressure drops below the saturation pressure, cavitation can occur. The current research focuses on measuring the pressure nearby the cavitation front, and the associated pressure distribution within the two-phase region, in a converging diverging nozzle. A blow-down flow system was used to conduct measurements with water as the working fluid. The flow rate was measured with a rotameter and a Coriolis flow meter. The nozzle is a transparent 3D printed nozzle with an inlet diameter of 9.3 mm, throat diameter of 1.71 mm, and an outlet diameter of 9.3 mm. The upstream reservoir was kept at atmospheric pressure and was elevated above the level of the nozzle inlet. The downstream reservoir was evacuated to create a pressure difference that would drive fluid through the nozzle. The pressure distribution within the nozzle was measured using eight pressure transducers connected to the nozzle with 0.006” diameter taps, and a high-speed camera was used to capture flow visualization. The pressure distribution was measured for steady cavitating flow at several back pressures, and during an increasing flow rate to capture pressure changes during cavitation initiation. These results give direct pressure measurements during cavitating flow, along with the accompanying flow visualization. They should prove useful for furthering the understanding of the metastable fluid mechanics behavior of cavitating flows, and thereby contribute to the ability to ultimately maximize the cooling potential of the cavitation phenomena.


Sign in / Sign up

Export Citation Format

Share Document