scholarly journals Performance Prediction Program for Wind-Assisted Cargo Ships

2021 ◽  
Vol 6 (01) ◽  
pp. 91-117
Author(s):  
Martina Reche-Vilanova ◽  
Heikki Hansen ◽  
Harry B. Bingham

Wind-Assisted Propulsion Systems (WAPS) can play a key role in achieving the IMO 2050 targets on reducing the total annual GHG emissions from international shipping by at least 50%. The present project deals with the development of a six degree of freedom (DoF) Performance Prediction Program (PPP) for wind-assisted cargo ships aimed at contributing knowledge on WAPS performance. It is a fast and easy tool, able to predict the performance of any commercial ship with three possible different WAPS installed: rotor sails, rigid wing sails and DynaRigs; with only the ship main particulars and general dimensions as input data. The tool is based on semi-empirical methods and a WAPS aerodynamic database created from published data on lift and drag coefficients, which can be interpolated with the aim to scale to different sizes and configurations. A model validation is carried out to evaluate its reliability. The results are compared with the real sailing data of a Long Range 2 (LR2) class wind-assisted tanker vessel, the Maersk Pelican. The study indicates that the PPP shows good agreement with the technology suppliers’ own modelling tool and reasonable agreement with the trends of the real sailing measurements. However, for downwind sailing conditions, the predictions are more conservative than the measured values. Lastly, results showing and comparing power savings for the three different WAPS are presented. Rotor Sails are found to be the most efficient WAPS studied with a much higher potential of driving force generation per square meter of projected sail area.

2010 ◽  
Vol 1254 ◽  
Author(s):  
A. Köhler ◽  
G. Behr

AbstractMeasurements of the actual fluorine content x in the RO1−xFxFeAs-samples by wavelength-dispersive X-ray spectroscopy (WDX) reveal sample dependent discrepancies to the nominal fluorine content (initial weight). In particular for SmO1−xFxFeAs, the measured value only reached approximately half of the required value. In the lanthanum compound LaO1−xFxFeAs, we found a good agreement mainly for x>0.05, but the fluorine hardly goes into the sample for x<0.05. We used the measured fluorine content when plotting the electronic phase diagrams again and find a more consistent picture occurs as well for our samples as for comparison with the divers published data.


Author(s):  
Yingying Zhang ◽  
Shijie Zhang

This study proposes a 1D meanline program for the modeling of modern transonic axial multistage compressors. In this method, an improved blockage factor model is proposed. Work-done factor that varies with the compressor performance conditions is added in this program, and at the same time a notional blockage factor is kept. The coefficient of deviation angle model is tuned according to experimental data. In addition, two surge methods that originated from different sources are chosen to add in and compare with the new method called mass flow separation method. The salient issues presented here deal first with the construction of the compressor program. Three well-documented National Aerodynamics and Space Administration (NASA) axial transonic compressors are calculated, and the speedlines and aerodynamic parameters are compared with the experimental data to verify the reliability and robustness of the proposed method. Results show that consistent agreement can be obtained with such a performance prediction program. It was also apparent that the two common methods of surge prediction, which rely upon either stage or overall characteristic gradients, gave less agreement than the method called mass flow separation method.


2014 ◽  
Vol 12 (2) ◽  
pp. 153-163
Author(s):  
Viktor Anishchenko ◽  
Vladimir Rybachenko ◽  
Konstantin Chotiy ◽  
Andrey Redko

AbstractDFT calculations of vibrational spectra of chlorophosphates using wide range of basis sets and hybrid functionals were performed. Good agreement between calculated and experimental vibrational spectra was reached by the combination of non-empirical functional PBE0 with both middle and large basis sets. The frequencies of the stretching vibrations of the phosphate group calculated using semi-empirical functional B3LYP for all basis sets deviate significantly from the experimental values. The number of polarization functions on heavy atoms was shown to be a key factor for the calculation of vibrational frequencies of organophosphates. The importance of consideration of all the stable rotamers for a complete assignment of fundamental modes was shown.


1989 ◽  
Vol 172 ◽  
Author(s):  
T. S. Aurora ◽  
D. O. Pederson ◽  
S. M. Day

AbstractLinear thermal expansion and refractive index variation have been measured in lead fluoride with a laser interferometer as a function of temperature. Data has been analyzed using the Lorentz-Lorenz relation. Molecular polarizability, band gap, variation of refractive index with density, and strain-polarizability parameter have been studied as a function of temperature. They exhibit a small variation with temperature except near the superionic phase transition where the variation appears to be more pronounced. The results are in good agreement with the published data near room temperature.


Author(s):  
Banjo Semire ◽  
Isaiah Ajibade Adejoro ◽  
Olusegun Ayobami Odunola

In this paper, we theoretically studied the geometries, stabilities, electronic and thermodynamic properties of bridged bithiophene S-oxide (BTO-X) derivates (with X = BH2, SiH2, S, S=O, and O) by using semi-empirical methods, ab-initio, and Density functional theory. The geometries and thermodynamic parameters calculated by PM3 were in good agreement with that of B3LYP/6-31G(d). The bandgap calculated by B3LYP/6-31G(d) ranged from 3.94eV (BTO-O)-3.16eV (BTO-BH2). The absorption λmax calculated suing B3LYP/6-31G(d) shifted to longer wavelength with X=BH2, SiH2, and S=O due to enhancement of π-conjugated system whereas, BTO-S and BTO-O shifted to shorter wavelengths as compared to dimmer thiophene S-oxide (2TO).


2021 ◽  
Author(s):  
Sayeed Ally

Abrasive jet micro-machining is a process that utilizes small abrasive particles entrained in a gas stream to erode material, creating micro-features such as channels and holes. Erosion experiments were carried out on aluminum 6061-T6, Ti-6A1-4V alloy, and 316L stainless steel using 50 μm A1₂O₃ abrasive powder launched at an average speed of 106 m/s. The dependence of erosion rate on impact angle was measured and fitted to a semi-empirical model. The erosion data was used in an analytical model to predict the surface evolution of unmasked channels machined with the abrasive jet at normal and oblique incidence, and masked channels at normal incidence. The predictions of the model were in good agreement with the measured profiles for unmasked channels at normal and oblique impact, and masked channels in at normal incidence up to an aspect ratio (channel depth/width) of 1.25. For the first time, it has been demonstrated that the surface evolution of features machined in metals can be predicted.


1961 ◽  
Vol 14 (4) ◽  
pp. 598 ◽  
Author(s):  
EJ Williams

Though randomly moving insects released from a central point in a uniform environment are often found to be distributed according to a circular normal distribution, their larvae will not conform to this distribution. When such insects lay at a constant rate and are subject to constant mortality, their larvae are found to be spatially distributed according to a highly peaked frequency function, depending on the modified Bessel function of the second kind. This theoretical conclusion is in good agreement with published data. Some of the properties of the theoretical distribution are discussed.


2005 ◽  
Vol 2 (1) ◽  
pp. 155-165
Author(s):  
Baghdad Science Journal

Many of accurate inertial guided missilc systems need to use more complex mathematical calculations and require a high speed processing to ensure the real-time opreation. This will give rise to the need of developing an effcint


2019 ◽  
Author(s):  
Xinxu Zhao ◽  
Julia Marshall ◽  
Stephan Hachinger ◽  
Christoph Gerbig ◽  
Jia Chen

Abstract. Though they cover less than 3 % of the global land area, urban areas are responsible for over 70 % of the global greenhouse gas (GHG) emissions and contain 55 % of the global population. A quantitative tracking of GHG emissions in urban areas is therefore of great importance, with the aim of accurately assessing the amount of emissions and identifying the emission sources. The Weather Research and Forecasting model (WRF) coupled with GHG modules (WRF-GHG) developed for mesoscale atmospheric GHG transport, can predict column-averaged abundances of CO2 and CH4 (XCO2 and XCH4). In this study, we use WRF-GHG to model the Berlin area at a high spatial resolution of 1 km. The simulated wind and concentration fields were compared with the measurements from a campaign performed around Berlin in 2014 (Hase et al., 2015). The measured and simulated wind fields mostly demonstrate good agreement and the simulated XCO2 agrees well with the measurement. In contrast, a bias in the simulated XCH4 of around 2.7 % is found, caused by relatively high initialization values for the background concentration field. We find that an analysis using differential column methodology (DCM) works well for the XCH4 comparison, as corresponding background biases then cancel out. From the tracer analysis, we find that the enhancement of XCH4 is highly dependent on human activities. The XCO2 signal in the vicinity of Berlin is dominated by anthropogenic behavior rather than biogenic activities. We conclude that DCM is an effective method for comparing models to observations independently of biases caused, e.g., by initial conditions. It allows us to use our high resolution WRF-GHG model to detect and understand sources of GHG emissions quantitatively in urban areas.


2019 ◽  
Vol 161 (A2) ◽  

In this paper, an attempt has been made to predict the performance of a planing catamaran using a mathematical model. Catamarans subjected to a common hydrodynamic lift, have an extra lift between the two asymmetric half bodies. In order to develop a mathematical model for performance prediction of planing catamarans, existing formulas for hydrodynamic lift calculation must be modified. Existing empirical and semi-empirical equations in the literature have been implemented and compared against available experimental data. Evaluation of lift in comparison with experimental data has been documented. Parameters influencing the interaction between demi-hulls and separation effects have been analyzed. The mathematical model for planing catamarans has been developed based on Savitsky’s method and results have been compared against experimental data. Finally, the effects of variation in hull geometry such as deadrise angle and distance between two half bodies on equilibrium trim angle, resistance and wetted surface have been examined.


Sign in / Sign up

Export Citation Format

Share Document