Extractable Iron and Manganese in Soil as Influenced by Management Practices in Some Long-Term Experiments of India

2018 ◽  
Vol 66 (1) ◽  
pp. 120
Author(s):  
A.K. Pradhan ◽  
K.S. Beura ◽  
R. Das ◽  
D. Padhan ◽  
G.C. Hazra ◽  
...  
2018 ◽  
pp. 357-369
Author(s):  
Péter Pepó

The impact of agrotechnical management practices (nutrient and water supply, crop rotation, crop protection, genotype) on the yields of winter wheat and maize and on the soil water and nutrient cycles was studied in long-term experiments set up in 1983 in Eastern Hungary on chernozem soil. The long-term experiments have shown that nitrogen fertilizer rates exceeding the N-optimum of winter wheat resulted in the accumulation of NO3-N in the soil. Winter wheat varieties can be classified into four groups based on their natural nutrient utilization and their fertilizer response. The fertilizer responses of wheat varieties depended on crop year (6.5–8.9 t ha-1 maximum yields in 2011–2015 years) and the genotypes (in 2012 the difference was ~3 t ha-1 among varieties). The optimum N(+PK) doses varied between 30–150 kg ha-1 in different crop years. In maize production fertilization, irrigation and crop rotation have decision role on the yields. The efficiency of fertilization modified by cropyear (in dry 891–1315 kg ha-1, in average 1927–4042 kg ha-1, in rainy cropyear 2051–4473 kg ha-1 yield surpluses of maize, respectively) and crop rotation (in monoculture 1315–4473 kg ha-1, in biculture 924–2727 kg ha-1 and triculture 891–2291 kg ha-1 yield surpluses of maize, respectively). The optimum fertilization could improve the water use efficiency in maize production. Our long-term experiments gave important ecological and agronomic information to guide regional development of sustainable cropping systems.


2018 ◽  
Vol 265 ◽  
pp. 1-7 ◽  
Author(s):  
Zhanguo Bai ◽  
Thomas Caspari ◽  
Maria Ruiperez Gonzalez ◽  
Niels H. Batjes ◽  
Paul Mäder ◽  
...  

2017 ◽  
Vol 63 ◽  
pp. 377-411
Author(s):  
David Powlson ◽  
Phil Brookes

David Jenkinson was one of the most influential soil scientists of his generation, bringing new insights into the transformations of organic matter and nitrogen in soil. He spent the majority of his career at Rothamsted Research, Harpenden, UK. His studies were influential regarding the role of soil carbon stocks in the context of climate change and the role of nitrogen fertilizer in delivering adequate supplies of food for a growing world population. His research encompassed both fundamental studies on soil processes and immensely practical applications of this knowledge, often utilizing the Rothamsted long-term experiments that have run for over 170 years. He is particularly well known for his development of a method for determining the quantity of organic carbon held in the cells of living micro-organisms in soil, termed the ‘soil microbial biomass’. This breakthrough opened the way for a new wave of soil biological research. David developed one of the earliest computer models for the turnover of organic carbon in soil, known as the Rothamsted Carbon Model, RothC. This model, conceptually very simple, has proved highly successful in simulating and predicting changes in soil organic carbon (SOC) content under different management practices worldwide, being used by over 2600 people in 115 countries. His research using the stable isotope of nitrogen, 15 N, in large-scale field experiments drew attention to the factors leading to inefficiencies in the use of nitrogen fertilizer but also demonstrated that it is possible to achieve high efficiency if good agricultural management practices are followed. It also demonstrated, more clearly than previously, the great importance of soil organic matter as a source of nitrogen for crops and the role of the soil microbial biomass both in immobilizing a proportion of applied fertilizer nitrogen and also in causing confusion in the interpretation of such experiments. By calculating nitrogen budgets for the Rothamsted long-term experiments he quantified the deposition of nitrogen compounds from atmosphere to land, laying foundations for later studies concerning the ecological and agricultural impacts of this significant input of nitrogen.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1362
Author(s):  
Ioanna S. Panagea ◽  
Antonio Berti ◽  
Pavel Čermak ◽  
Jan Diels ◽  
Annemie Elsen ◽  
...  

Soil water retention (SWR) is an important soil property related to soil structure, texture, and organic matter (SOM), among other properties. Agricultural management practices affect some of these properties in an interdependent way. In this study, the impact of management-induced changes of soil organic carbon (SOC) on SWR is evaluated in five long-term experiments in Europe (running from 8 up to 54 years when samples were taken). Topsoil samples (0–15 cm) were collected and analysed to evaluate the effects of three different management categories, i.e., soil tillage, the addition of exogenous organic materials, the incorporation of crop residues affecting SOC and water content under a range of matric potentials. Changes in the total SOC up to 10 g C kg−1 soil (1%) observed for the different management practices, do not cause statistically significant differences in the SWR characteristics as expected. The direct impact of the SOC on SWR is consistent but negligible, whereas the indirect impact of SOC in the higher matric potentials, which are mainly affected by soil structure and aggregate composition, prevails. The different water content responses under the various matric potentials to SOC changes for each management group implies that one conservation measure alone has a limited effect on SWR and only a combination of several practices that lead to better soil structure, such as reduced soil disturbances combined with increased SOM inputs can lead to better water holding capacity of the soil.


1995 ◽  
Vol 35 (7) ◽  
pp. 929 ◽  
Author(s):  
K Paustian ◽  
ET Elliott ◽  
HP Collins ◽  
CV Cole ◽  
EA Paul

Soils contain a large proportion of the carbon (C) in the terrestrial biosphere, yet the role of soils as a sink or a source of net atmospheric C flux is uncertain. In agricultural systems, soil C is highly influenced by management practices and there is considerable interest in adapting management systems to promote soil C sequestration, thereby helping to mitigate atmospheric CO2 increases. Long-term field experimental sites represent a unique source of information on soil C dynamics, and networks of such sites provide a key ingredient for making large-scale assessments of soil C change across ranges in climate and soil conditions and management regimes. Currently, there are collaborative efforts to develop such site networks in Australia, Europe, and North America. A network of long-term experiments in North America was established to provide baseline information on the effects of management (i.e. tillage, crop rotations, fertilisation, organic amendments) on soil organic matter. Historical data on soils, primary productivity, climate, and management were synthesised by scientists from the individual field sites, representing a total of 35 long-term field experiments. An additional cross-site soil sampling campaign was carried out to provide uniform comparisons of soil C and nitrogen (N), both within and across sites. Long-term field experiments are a principle component necessary for regional assessments of soil C dynamics. We describe a general methodology for combining long-term data with process-oriented simulation models and regional-level, spatially resolved databases. Such analyses are needed to assess past and present changes in soil C at regional to global scales and to make projections of the potential impacts of changes in climate, CO2, and landuse patterns on soil C in agroecosystems.


2011 ◽  
Vol 60 (2) ◽  
pp. 343-358
Author(s):  
Péter Csathó ◽  
Marianna Magyar ◽  
Erzsébet Osztoics ◽  
Katalin Debreczeni ◽  
Katalin Sárdi

A szabadföldi trágyázási (tartam)kísérletek eredményeit talaj-, illetve diagnosztikai célú növényvizsgálatok segítségével tudjuk kiterjeszteni, általánosítani – figyelembe véve természetesen a kiterjesztés korlátait is. Célszerűnek láttuk ezen túl a talaj könnyen oldható tápelem-, közöttük P-tartalmát is meghatározni a hazánkban hivatalosan elfogadott AL- (ammónium-laktátos) módszer mellett az Európai Unióban és Észak-Amerikában alkalmazott P-tesztekkel is (CaCl2-, H2O-, Olsen-, Bray1-, LE-, Mehlich3- stb.) a hazai OMTK kísérletek talajmintáiban. A kísérleti helyek talajtulajdonságaiban megnyilvánuló jelentős különbségek lehetőséget adnak rá, hogy a talaj P-teszteket – és a növényi P-felvételt – jellegzetes hazai talajokon, sokszor szélsőséges talajparaméterek mellett vizsgáljuk. Az egyes P-szintek között a 28 év átlagában mintegy évi 50 kg P2O5·ha-1volt a különbség. A P0-szinten mért P-tartalmak jól jelezték az egyes kísérleti helyek talajának eltérő P-ellátottságát, illetve, közvetve, fizikai féleségében, pH és mészállapotában meglévő különbségeket. A P2-szinten – a hazai talajokra, P-igényes növényekre a hazai szabadföldi P-trágyázási tartamkísérleti adatbázisban talált összefüggésekre alapozott – új AL-P határértékek szerint csupán a bicsérdi csernozjom barna erdőtalajon nem javult a P-ellátottság legalább a „jó” szintig. Vizsgálataink megerősítették az AL-módszer függőségét a CaCO3-tartalomtól: a Mehlich3 módszerrel való összefüggésben a karbonátmentes és a karbonátos talajok csoportja erőteljesen elkülönült egymástól. Az AL-P korrekció elvégzése, azaz az AL-P értékeknek egy standard talajtulajdonság-sorra való konvertálása (KA: 36; pH(KCl): 6,8; CaCO3: 0,1%) látványosan csökkentette az AL-módszernek a talaj CaCO3-tartalmától való függőségét. Az AL-P és Olsen-P, valamint a korrigált AL-P és Olsen-P tartalmak összehasonlításában ugynakkor ugyanez az összefüggés nem volt állapítható, ami arra utal, hogy az Olsen módszer bizonyos fokig szintén pH- és mészállapot függő. Kísérleti eredményeink megerősítették a Sarkadi-féle AL-P korrekciós modell helytálló voltát. Fenti megállapításunkat ugyanakkor a növényi P-tartalmakkal való összefüggéseknek is igazolniuk kell. Szükséges tehát a talajvizsgálati eredményeknek a diagnosztikai célú növényvizsgálatokkal, valamint a terméseredményekkel való összevetése. A tartamkísérletek talajai lehetőséget nyújtanak a környezetvédelmi célú P-vizsgálatok értékelésére, a talaj P-feltöltöttsége környezeti kockázatának becslésére. Ezekkel a kérdésekkel a cikksorozat további részeiben kívánunk foglalkozni.


1986 ◽  
Vol 18 (4-5) ◽  
pp. 53-61 ◽  
Author(s):  
P. B. Birch ◽  
G. G. Forbes ◽  
N. J. Schofield

Early results from monitoring runoff suggest that the programme to reduce application of superphosphate to farmlands in surrounding catchments has been successful in reducing input of phosphorus to the eutrophic Peel-Harvey estuary. In the estuary this phosphorus fertilizes algae which grow in abundance and accumulate and pollute once clean beaches. The success of the programme has been judged from application of an empirical statistical model, which was derived from 6 years of data from the Harvey Estuary catchment prior to a major change in fertilizer practices in 1984. The model relates concentration of phosphorus with rate of flow and time of year. High phosphorus concentrations were associated with high flow rates and with flows early in the high runoff season (May-July). The model predicted that the distribution of flows in 1984 should have resulted in a flow-weighted concentration of phosphorus near the long-term average; the observed concentration was 25% below the long-term average. This means that the amount of phosphorus discharged into the Harvey Estuary could have been about 2 5% less than expected from the volume of runoff which occurred. However several more years of data are required to confirm this trend.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Ramón Bienes ◽  
Maria Jose Marques ◽  
Blanca Sastre ◽  
Andrés García-Díaz ◽  
Iris Esparza ◽  
...  

Long-term field trials are essential for monitoring the effects of sustainable land management strategies for adaptation and mitigation to climate change. The influence of more than thirty years of different management is analyzed on extensive crops under three tillage systems, conventional tillage (CT), minimum tillage (MT), and no-tillage (NT), and with two crop rotations, monoculture winter-wheat (Triticum aestivum L.) and wheat-vetch (Triticum aestivum L.-Vicia sativa L.), widely present in the center of Spain. The soil under NT experienced the largest change in organic carbon (SOC) sequestration, macroaggregate stability, and bulk density. In the MT and NT treatments, SOC content was still increasing after 32 years, being 26.5 and 32.2 Mg ha−1, respectively, compared to 20.8 Mg ha−1 in CT. The SOC stratification (ratio of SOC at the topsoil/SOC at the layer underneath), an indicator of soil conservation, increased with decreasing tillage intensity (2.32, 1.36, and 1.01 for NT, MT, and CT respectively). Tillage intensity affected the majority of soil parameters, except the water stable aggregates, infiltration, and porosity. The NT treatment increased available water, but only in monocropping. More water was retained at the permanent wilting point in NT treatments, which can be a disadvantage in dry periods of these edaphoclimatic conditions.


Sign in / Sign up

Export Citation Format

Share Document