Design and evaluation of fast dissolving oral films of Zolpidem by solvent casting method

2016 ◽  
Vol 6 (2) ◽  
pp. 67
Author(s):  
Dasari Nirmala ◽  
Swapna Nandhini ◽  
M. Sudhakar
Author(s):  
S. Jyothi Sri ◽  
D.V. R.N Bhikshapathi

The present investigation was aimed with the objective of developing fast dissolving oral films of Aripiprazole to attain quick onset of action for the better management of Schizophrenia. Fourteen formulations (F1-F14) of Aripiprazole mouth dissolving films by solvent-casting method using HPMC E5, HPMC E15, Maltodextrin, PG and PVA. Formulations were evaluated for their physical characteristics, thickness, folding endurance, tensile strength, disintegration time, drug content uniformity and drug release characteristics and found to be within the limits. Among the prepared formulations F13 showed minimum disintegration time 10 sec, maximum drug was released i.e. 99.49 ± 0.36% of drug within 8 min when compared to the other formulations and finalized as optimized formulation. FTIR data revealed that no interactions take place between the drug and polymers used in the optimized formulation. The in vitro dissolution profiles of marketed product and optimized formulation was compared and found to be the drug released was 20.73 ± 0.25 after 8 min. Therefore, it can be a good alternative to conventional Aripiprazole for immediate action. In vitro evaluation of the Aripiprazole fast dissolving oral films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Aripiprazole. The mouth dissolving film is potentially useful for the treatment of Schizophrenia where the quick onset of action is desired.


2018 ◽  
Vol 8 (4) ◽  
pp. 721-725 ◽  
Author(s):  
Yuvraj Govindrao Jadhav ◽  
Upendra Chandrakant Galgatte ◽  
Pravin Digambar Chaudhari

Purpose: To develop fast dissolving oral film to address vomiting and nausea in pediatric population. Methods: Oral films of Dimenhydrinate were prepared by solvent casting method by using hydroxypropylmethyl cellulose E5 (HPMC E5), polyethylene glycol 400 (PEG 400) and croscarmellose sodium. Solubility of dimenhydrinate was enhanced by ethanol as a co-solvent. To make dimenhydrinate palatable sodium saccharin and peppermint oil were used. All films were evaluated for mechanical parameters, surface pH, morphology, disintegration time and percent dissolution. Results: Films were smooth, acceptable and white in colour. For optimized batch, drug content (99.106%), disintegration time (25 sec), dissolution (99.10% in 210 sec), surface pH (6.81) were acceptable. Conclusion: Optimized batch, due to its potential to deliver through fast dissolving film, can be developed for clinical use.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 122-125
Author(s):  
Yadagiri Phalguna ◽  
Haritha Pasupulati ◽  
Sandhya Rudra

The predominant goal of this work is to formulate and evaluate Cetirizine HCl ODF’s the usage of Sodium starch glycolate (SSG) as superdisintegrant, Sodium alginate as polymer and Glycerol as plasticizer. Films were prepared by way of Solvent casting method and evaluated for thickness, folding endurance, percentage elongation, floor pH and disintegration time. The consequences indicate that method prepared with 17.5% combo of polymer and plasticizer was determined to be optimized. The three special formulations F1, F2 and F3 of CTZ motion pictures were organized via solvent casting technique the usage of sodium alginate as polymer, SSG as disintegrant and glycerol as plasticizer. Menthol was once used as cooling agent along with aspartame as sweetener and citric acid as a style overlaying agent. The formulation (F3) with presence of superdisintegrant and combo of polymer, plasticizer confirmed first-rate results. Keywords: Cetirizine HCl, Oral thin film, superdisintegrant, polymer, plasticizer


2018 ◽  
Vol 28 (2) ◽  
pp. 429-432
Author(s):  
Dilyana Zvezdova

Chitosan, a hydrophilic biopolymer industrially obtained by N-deacetylation of chitin, can be applied as an antimicrobial agent. It highlights the applications of chitosan as an antimicrobial agent against fungi, bacteria, and viruses and as an elicitor of plant defense mechanisms. A series of novel chitosan-sulfathiazole nanocomposite (CSFZ) films were prepared by using solvent casting method for wound healing application. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the interaction between negatively charged sulfathiazole and positively charged chitosan. Moreover, the antibacterial activity of the films was investigated against gram positive and gram negative microorganisms. It was found that all CSFZ films showed good inhibitory activity against all the tested bacteria as compared to control. The above analysis suggested that the CSFZ films could be used as potential candidates for wound healing application.


2019 ◽  
Vol 821 ◽  
pp. 89-95
Author(s):  
Wanasorn Somphol ◽  
Thipjak Na Lampang ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
...  

Poly (lactic acid) or PLA was reinforced by nanocellulose and polyethylene glycol (PEG), which were introduced into PLA matrix from 0 to 3 wt.% to enhance compatibility and strength of the PLA. The nanocellulose was prepared by TEMPO-mediated oxidation from microcrystalline cellulose (MCC) powder and characterized by TEM, AFM, and XRD to reveal rod-like shaped nanocellulose with nanosized dimensions, high aspect ratio and high crystallinity. Films of nanocellulose/PEG/PLA nanocomposites were prepared by solvent casting method to evaluate the mechanical performance. It was found that the addition of PEG in nanocellulose-containing PLA films resulted in an increase in tensile modulus with only 1 wt% of PEG, where higher PEG concentrations negatively impacted the tensile strength. Furthermore, the tensile strength and modulus of nanocellulose/PEG/PLA nanocomposites were higher than the PLA/PEG composites due to the existence of nanocellulose chains. Visual traces of crazing were detailed to describe the deformation mechanism.


Author(s):  
K. Pallavi ◽  
T. Pallavi

Objective: The main aim of the present research was to develop an oral fast dissolving polymeric film (FDF) with good mechanical properties, faster disintegration and dissolution when placed on the tongue.Methods: Eletriptan hydrobromide is prescribed for the treatment of mild to a moderate migraine. The polymers selected for preparing films were Pullulan, Maltodextrin (MDX), Acacia, Sodium alginate (SA), Locust bean gum (LBG), Guar gum (GG), Xanthan gum (XG), Polyvinyl alcohol (PVA), Polyvinyl pyrrolidine (PVP), Hydroxyl propyl methyl cellulose (HPMC) E5, and HPMC E15. Twelve sets of films FN1–FN12 were prepared by solvent casting method with Pullulan and combination of Acacia, MDX, SA, LBG, GG, XG, PVA, PVP, HPMC E5 and HPMC E15. Five sets of films FS1–FS5 were prepared using synthetic polymers like PVA, PVP, HPMC E5 and HPMC E15.Results: From all the prepared polymer formulations, FN2, FN8, and FS3 were selected based on disintegration time, and drug release and amongst this three FN2 was optimised based on its disintegration time (D. T). The percent drug release of the optimised film was compared with the percent release of the pure drug.Conclusion: The optimised formulation had a D. T of 16 s and a percent drug release of 97.5% in 10 min in pH 6.8 phosphate buffer and 100.6% drug release in 10 min in 0.1N HCl.


2012 ◽  
Vol 430-432 ◽  
pp. 20-23 ◽  
Author(s):  
Hou Yong Yu ◽  
Zong Yi Qin

The biodegradable nanocomposites of poly (3–hydroxybutyrate–co–3–hydroxyvalerate) (PHBV) with different cellulose nanocrystals (CNCs) contents were prepared by a solvent casting method. The effects of CNCs on the crystallization behavior of PHBV were studied by DSC. The DSC results showed that compared to PHBV, the melt crystallization temperature increased to 92.3 °C for the nanocomposites with 10 wt. % CNCs, which indicated that the crystallization of PHBV became easier with the addition of CNCs. Moreover, the non–isothermal crystallization kinetics study illustrated that overall crystallization rate of PHBV in the nanocomposites was faster than that of neat PHBV, which should be attributed to the strong heterogeneous nucleation of CNCs.


2018 ◽  
Vol 89 (6) ◽  
pp. 975-988 ◽  
Author(s):  
Vera Vivod ◽  
Branko Neral ◽  
Aleš Mihelič ◽  
Vanja Kokol

Cellulose nanofibrils (CNFs) were surface functionalized with hexamethylenediamine (HMDA) and, further, integrated with native CNFs in various weight mass ratios to fabricate water-stable films by the solvent casting method, to be used for the removal of tri-chromatic and anionic black reactive dye with the highest bleeding effect in the very first minutes of textile laundering, and in a weight mass compared to a commercial color-catcher sheet (Delta Pronatura (DP)). The effects of CNF-HMDA content on film bath absorption, surface potential and contact angle properties, as well as dye removal kinetics from different laundering baths (A – without and B – with a detergent) in up to 140 min were studied at 20℃ versus 60℃ and using different dye concentrations (0.1–1 g/L). It was found that bath absorption is decreased significantly (up to 60%) by increasing the CNF-HMDA content in the films, as compared to using a DP color-catcher sheet, due to a morphologically denser structure with surface-positioned hydrophobic ethylene moieties of HMDA, as well as reducing electrostatic attraction groups of CNF and HMDA. Such a surface interacts kinetically faster with anionic and hydrophobic dye molecules already at 20℃, reaching up to 37–80% removal of all dye colorants in the first 20 min. In contrast, the dye removal efficacy of the DP color-catcher sheet is due to it interacting with a cationic polymer being released from the surface, which is better only for a bluish color, and at 60℃, while being between 30% and 48%, as its release is hindered and reduced by the deposition of surfactants from the detergent.


Proceedings ◽  
2019 ◽  
Vol 26 (1) ◽  
pp. 18
Author(s):  
Bouamer ◽  
Benrekaa ◽  
Younes

In this study, granulated polylactic acid and ZnO, SiO2 and Al2O3 powders were mixed to form PLA/ZnO and PLA/ZnO SiO2 Al2O3 composites with different concentrations using a solvent casting method. [...]


Sign in / Sign up

Export Citation Format

Share Document