Highly efficient film-like nanocellulose-based adsorbents for the removal of loose reactive dye during textile laundering

2018 ◽  
Vol 89 (6) ◽  
pp. 975-988 ◽  
Author(s):  
Vera Vivod ◽  
Branko Neral ◽  
Aleš Mihelič ◽  
Vanja Kokol

Cellulose nanofibrils (CNFs) were surface functionalized with hexamethylenediamine (HMDA) and, further, integrated with native CNFs in various weight mass ratios to fabricate water-stable films by the solvent casting method, to be used for the removal of tri-chromatic and anionic black reactive dye with the highest bleeding effect in the very first minutes of textile laundering, and in a weight mass compared to a commercial color-catcher sheet (Delta Pronatura (DP)). The effects of CNF-HMDA content on film bath absorption, surface potential and contact angle properties, as well as dye removal kinetics from different laundering baths (A – without and B – with a detergent) in up to 140 min were studied at 20℃ versus 60℃ and using different dye concentrations (0.1–1 g/L). It was found that bath absorption is decreased significantly (up to 60%) by increasing the CNF-HMDA content in the films, as compared to using a DP color-catcher sheet, due to a morphologically denser structure with surface-positioned hydrophobic ethylene moieties of HMDA, as well as reducing electrostatic attraction groups of CNF and HMDA. Such a surface interacts kinetically faster with anionic and hydrophobic dye molecules already at 20℃, reaching up to 37–80% removal of all dye colorants in the first 20 min. In contrast, the dye removal efficacy of the DP color-catcher sheet is due to it interacting with a cationic polymer being released from the surface, which is better only for a bluish color, and at 60℃, while being between 30% and 48%, as its release is hindered and reduced by the deposition of surfactants from the detergent.

2018 ◽  
Vol 28 (2) ◽  
pp. 429-432
Author(s):  
Dilyana Zvezdova

Chitosan, a hydrophilic biopolymer industrially obtained by N-deacetylation of chitin, can be applied as an antimicrobial agent. It highlights the applications of chitosan as an antimicrobial agent against fungi, bacteria, and viruses and as an elicitor of plant defense mechanisms. A series of novel chitosan-sulfathiazole nanocomposite (CSFZ) films were prepared by using solvent casting method for wound healing application. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the interaction between negatively charged sulfathiazole and positively charged chitosan. Moreover, the antibacterial activity of the films was investigated against gram positive and gram negative microorganisms. It was found that all CSFZ films showed good inhibitory activity against all the tested bacteria as compared to control. The above analysis suggested that the CSFZ films could be used as potential candidates for wound healing application.


2019 ◽  
Vol 821 ◽  
pp. 89-95
Author(s):  
Wanasorn Somphol ◽  
Thipjak Na Lampang ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
...  

Poly (lactic acid) or PLA was reinforced by nanocellulose and polyethylene glycol (PEG), which were introduced into PLA matrix from 0 to 3 wt.% to enhance compatibility and strength of the PLA. The nanocellulose was prepared by TEMPO-mediated oxidation from microcrystalline cellulose (MCC) powder and characterized by TEM, AFM, and XRD to reveal rod-like shaped nanocellulose with nanosized dimensions, high aspect ratio and high crystallinity. Films of nanocellulose/PEG/PLA nanocomposites were prepared by solvent casting method to evaluate the mechanical performance. It was found that the addition of PEG in nanocellulose-containing PLA films resulted in an increase in tensile modulus with only 1 wt% of PEG, where higher PEG concentrations negatively impacted the tensile strength. Furthermore, the tensile strength and modulus of nanocellulose/PEG/PLA nanocomposites were higher than the PLA/PEG composites due to the existence of nanocellulose chains. Visual traces of crazing were detailed to describe the deformation mechanism.


Author(s):  
K. Pallavi ◽  
T. Pallavi

Objective: The main aim of the present research was to develop an oral fast dissolving polymeric film (FDF) with good mechanical properties, faster disintegration and dissolution when placed on the tongue.Methods: Eletriptan hydrobromide is prescribed for the treatment of mild to a moderate migraine. The polymers selected for preparing films were Pullulan, Maltodextrin (MDX), Acacia, Sodium alginate (SA), Locust bean gum (LBG), Guar gum (GG), Xanthan gum (XG), Polyvinyl alcohol (PVA), Polyvinyl pyrrolidine (PVP), Hydroxyl propyl methyl cellulose (HPMC) E5, and HPMC E15. Twelve sets of films FN1–FN12 were prepared by solvent casting method with Pullulan and combination of Acacia, MDX, SA, LBG, GG, XG, PVA, PVP, HPMC E5 and HPMC E15. Five sets of films FS1–FS5 were prepared using synthetic polymers like PVA, PVP, HPMC E5 and HPMC E15.Results: From all the prepared polymer formulations, FN2, FN8, and FS3 were selected based on disintegration time, and drug release and amongst this three FN2 was optimised based on its disintegration time (D. T). The percent drug release of the optimised film was compared with the percent release of the pure drug.Conclusion: The optimised formulation had a D. T of 16 s and a percent drug release of 97.5% in 10 min in pH 6.8 phosphate buffer and 100.6% drug release in 10 min in 0.1N HCl.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanbo Zhang ◽  
Ruiyan Li ◽  
Wenzheng Wu ◽  
Yun’an Qing ◽  
Xiongfeng Tang ◽  
...  

The purpose of this work was to investigate the porous polyetherimide scaffold (P-PEIs) as an alternative biopolymer for bone tissue engineering. The P-PEIs was fabricated via solvent casting and particulate leaching technique. The morphology, phase composition, roughness, hydrophilicity, and biocompatibility of P-PEIs were evaluated and compared with polyetherimide (PEI) and Ti6Al4V disks. P-PEIs showed a biomimetic porous structure with a modulus of 78.95 ± 2.30 MPa. The water contact angle of P-PEIs was 75.4 ± 3.39°, which suggested that P-PEIs had a wettability surface. Moreover, P-PEIs provides a feasible environment for cell adhesion and proliferation. The relative cell adhesion capability and the cell morphology on P-PEIs were better than PEI and Ti6Al4V samples. Furthermore, the MC3T3-E1 cells on P-PEIs showed faster proliferation rate than other groups. It was revealed that the P-PEIs could be a potential material for the application of bone regeneration.


2012 ◽  
Vol 430-432 ◽  
pp. 20-23 ◽  
Author(s):  
Hou Yong Yu ◽  
Zong Yi Qin

The biodegradable nanocomposites of poly (3–hydroxybutyrate–co–3–hydroxyvalerate) (PHBV) with different cellulose nanocrystals (CNCs) contents were prepared by a solvent casting method. The effects of CNCs on the crystallization behavior of PHBV were studied by DSC. The DSC results showed that compared to PHBV, the melt crystallization temperature increased to 92.3 °C for the nanocomposites with 10 wt. % CNCs, which indicated that the crystallization of PHBV became easier with the addition of CNCs. Moreover, the non–isothermal crystallization kinetics study illustrated that overall crystallization rate of PHBV in the nanocomposites was faster than that of neat PHBV, which should be attributed to the strong heterogeneous nucleation of CNCs.


1981 ◽  
Vol 89 (2) ◽  
pp. 397-405 ◽  
Author(s):  
Kazumori MASAMOTO ◽  
Katsumi MATSUURA ◽  
Shigeru ITOH ◽  
Mitsuo NISHIMURA

Proceedings ◽  
2019 ◽  
Vol 26 (1) ◽  
pp. 18
Author(s):  
Bouamer ◽  
Benrekaa ◽  
Younes

In this study, granulated polylactic acid and ZnO, SiO2 and Al2O3 powders were mixed to form PLA/ZnO and PLA/ZnO SiO2 Al2O3 composites with different concentrations using a solvent casting method. [...]


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1296 ◽  
Author(s):  
Reidun C. Aadland ◽  
Salem Akarri ◽  
Ellinor B. Heggset ◽  
Kristin Syverud ◽  
Ole Torsæter

Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research objectives. In Part 1, secondary core flood using CNCs was compared to regular water flooding at fixed conditions, by reusing the same core plug to maintain the same pore structure. CNCs produced 5.8% of original oil in place (OOIP) more oil than LSW. For Part 2, the effect of injection scheme, temperature, and rock wettability was investigated using CNCs. The same trend was observed for the secondary floods, with CNCs performing better than their parallel experiment using LSW. Furthermore, the particles seemed to perform better under mixed-wet conditions. Additional oil (2.9–15.7% of OOIP) was produced when CNCs were injected as a tertiary EOR agent, with more incremental oil produced at high temperature. In the final part, the effect of particle type was studied. T-CNFs produced significantly more oil compared to CNCs. However, the injection of T-CNF particles resulted in a steep increase in pressure, which never stabilized. Furthermore, a filter cake was observed at the core face after the experiment was completed. Microfluidic experiments showed that both T-CNF and CNC nanofluids led to a better sweep efficiency compared to low salinity water flooding. T-CNF particles showed the ability to enhance the oil recovery by breaking up events and reducing the trapping efficiency of the porous medium. A higher flow rate resulted in lower oil recovery factors and higher remaining oil connectivity. Contact angle and interfacial tension measurements were conducted to understand the oil recovery mechanisms. CNCs altered the interfacial tension the most, while T-CNFs had the largest effect on the contact angle. However, the changes were not significant enough for them to be considered primary EOR mechanisms.


Sign in / Sign up

Export Citation Format

Share Document