scholarly journals Life cycle of Alytes dickhilleni Arntzen and García-París, 1995 and sympatric amphibian community in ponds with high conservation interest in Region of Murcia (SE Spain)

2019 ◽  
pp. 55-67
Author(s):  
Guerrero-Gómez Adrián ◽  
Zamora-Marín José Manuel ◽  
Torralva Mar ◽  
Oliva-Paterna Francisco José

Se ha estudiado el ciclo de vida durante un periodo anual (diciembre 2016–noviembre 2017) de los anfibios en dos cuerpos de agua artificiales en el límite oriental de la distribución de la especie amenazada Alytes dickhilleni Arntzen y García-París, 1995. En ambos sistemas, se reproduce la especie objetivo y dos más, Bufo spinosus Daudin, 1803, y Pelophylax perezi (López-Seoane, 1885). Los ciclos reproductivos de A. dickhilleni y P. perezi muestran semejanzas con lo descrito en medios naturales y artificiales en la Región de Murcia; por el contrario, B. spinosus presentó un adelanto significativo. Este estudio pone de manifiesto el importante papel de los cuerpos de agua artificiales ligados a prácticas ganaderas tradicionales para la conservación de A. dickhilleni en el sureste ibérico semiárido. Life cycle of amphibian community inhabiting two artificial ponds on the eastern edge of the native distribution of the endangered species Alytes dickhilleni Arntzen and García- Paris, 1995, was studied over a complete annual cycle (from December 2016 to November 2017). We confirm the breeding status of the target species and two more, Bufo spinosus Daudin, 1803 and Pelophylax perezi (López-Seoane, 1885). Breeding cycles of A. dickhilleni and P. perezi showed similar phenology to available data from other natural and manmade ponds on Region of Murcia; conversely, B. spinosus showed a slightly advanced cycle. This study highlights the important role of artificial and traditional livestock ponds to conservation of A. dickhilleni population in Iberian southeast.

Author(s):  
Petar Halachev ◽  
Victoria Radeva ◽  
Albena Nikiforova ◽  
Miglena Veneva

This report is dedicated to the role of the web site as an important tool for presenting business on the Internet. Classification of site types has been made in terms of their application in the business and the types of structures in their construction. The Models of the Life Cycle for designing business websites are analyzed and are outlined their strengths and weaknesses. The stages in the design, construction, commissioning, and maintenance of a business website are distinguished and the activities and requirements of each stage are specified.


2021 ◽  
Vol 22 (9) ◽  
pp. 4438
Author(s):  
Jessica Proulx ◽  
Kathleen Borgmann ◽  
In-Woo Park

The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.


2021 ◽  
Vol 22 (2) ◽  
pp. 643
Author(s):  
Xiao Li ◽  
Fen Wang ◽  
Yanyan Xu ◽  
Guijun Liu ◽  
Caihong Dong

Hydrophobins are a family of small secreted proteins found exclusively in fungi, and they play various roles in the life cycle. In the present study, genome wide analysis and transcript profiling of the hydrophobin family in Cordyceps militaris, a well-known edible and medicinal mushroom, were studied. The distribution of hydrophobins in ascomycetes with different lifestyles showed that pathogenic fungi had significantly more hydrophobins than saprotrophic fungi, and class II members accounted for the majority. Phylogenetic analysis of hydrophobin proteins from the species of Cordyceps s.l. indicated that there was more variability among the class II members than class I. Only a few hydrophobin-encoding genes evolved by duplication in Cordyceps s.l., which was inconsistent with the important role of gene duplication in basidiomycetes. Different transcript patterns of four hydrophobin-encoding genes during the life cycle indicated the possible different functions for each. The transcripts of Cmhyd2, 3 and 4 can respond to light and were related with the photoreceptors. CmQHYD, with four hydrophobin II domains, was first found in C. militaris, and multi-domain hydrophobins were only distributed in the species of Cordycipitaceae and Clavicipitaceae. These results could be helpful for further function research of hydrophobins and could provide valuable information for the evolution of hydrophobins.


Author(s):  
Neil O. M. Ravenscroft

AbstractThe marsh fritillary Euphydryas aurinia is declining across Europe and is of high conservation interest. Its ecology has been defined and its conservation status assessed primarily from the affinities and populations of young caterpillars in the autumn, before hibernation and high winter mortality. The possibility that caterpillars of E. aurinia can overwinter more than once was investigated on the Isle of Islay, Scotland after caterpillars were found to occur at some locations in the spring despite a pre-hibernation absence. Closely-related species in North America and Northern Europe can prolong larval development by diapausing for a year as does E. aurinia in Scandinavia. Measurements of development and manipulations of distribution confirmed that some caterpillars do extend the life-cycle in Scotland and may occur in areas devoid of larvae in their first year. Caterpillars attempting this life-cycle develop slowly in spring, attain the normal penultimate spring instar and then enter diapause while other caterpillars are pupating. They moult just before diapause, construct highly cryptic webs and on emergence the following spring are 5–6 times heavier than larvae emerging in their first spring, or the equivalent of a month or so ahead. They attain a final, extra instar as larvae in their first spring reach the penultimate instar. Knowledge of this life-cycle is confined in the UK to Islay but its occurrence in this mild climate implies that it is more widespread.Implications for insect conservation Conditions that permit long diapause are probably precise and may not be reflected in recognised qualities of habitat. The species may also be present despite a perceived absence in autumn, the standard period for monitoring. Assessments of the prevalence of the life-cycle and its contribution to the persistence of E. aurinia are required. Populations of E. aurinia are known to fluctuate greatly and do occur below the observation threshold for long periods.


2021 ◽  
Vol 9 (8) ◽  
pp. 1621
Author(s):  
Adeline Ribeiro E Silva ◽  
Alix Sausset ◽  
Françoise I. Bussière ◽  
Fabrice Laurent ◽  
Sonia Lacroix-Lamandé ◽  
...  

Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
You-Chul Jung ◽  
Mi-Ae Lee ◽  
Han-Shin Kim ◽  
Kyu-Ho Lee

AbstractBiofilm formation of Vibrio vulnificus is initiated by adherence of flagellated cells to surfaces, and then flagellum-driven motility is not necessary during biofilm maturation. Once matured biofilms are constructed, cells become flagellated and swim to disperse from biofilms. As a consequence, timely regulations of the flagellar components’ expression are crucial to complete a biofilm life-cycle. In this study, we demonstrated that flagellins’ production is regulated in a biofilm stage-specific manner, via activities of a protease DegQ and a chaperone FlaJ. Among four flagellin subunits for V. vulnificus filament, FlaC had the highest affinities to hook-associated proteins, and is critical for maturating flagellum, showed the least susceptibility to DegQ due to the presence of methionine residues in its DegQ-sensitive domains, ND1 and CD0. Therefore, differential regulation by DegQ and FlaJ controls the cytoplasmic stability of flagellins, which further determines the motility-dependent, stage-specific development of biofilms.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Eric Rossi ◽  
Megan E. Meuser ◽  
Camille J. Cunanan ◽  
Simon Cocklin

The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document