scholarly journals Water Cooling Pipe Structure for Heat-Dissipation of HEV Inverter System

Author(s):  
Gyoung-Man Kim ◽  
Byung-Guk Woo ◽  
Yong-Hwa Lee ◽  
Chan-Ho Kang ◽  
Tae-Won Chun ◽  
...  
Author(s):  
Dustin W. Demetriou ◽  
Vinod Kamath ◽  
Howard Mahaney

The generation-to-generation IT performance and density demands continue to drive innovation in data center cooling technologies. For many applications, the ability to efficiently deliver cooling via traditional chilled air cooling approaches has become inadequate. Water cooling has been used in data centers for more than 50 years to improve heat dissipation, boost performance and increase efficiency. While water cooling can undoubtedly have a higher initial capital cost, water cooling can be very cost effective when looking at the true lifecycle cost of a water cooled data center. This study aims at addressing how one should evaluate the true total cost of ownership for water cooled data centers by considering the combined capital and operational cost for both the IT systems and the data center facility. It compares several metrics, including return-on-investment for three cooling technologies: traditional air cooling, rack-level cooling using rear door heat exchangers and direct water cooling via cold plates. The results highlight several important variables, namely, IT power, data center location, site electric utility cost, and construction costs and how each of these influence the total cost of ownership of water cooling. The study further looks at implementing water cooling as part of a new data center construction project versus a retrofit or upgrade into an existing data center facility.


2012 ◽  
Vol 459 ◽  
pp. 609-614
Author(s):  
Kuo Zoo Liang ◽  
A Cheng Wang ◽  
Chun Ho Liu ◽  
Lung Tasi ◽  
Yan Cherng Lin

The purpose of this research is to design a new heat sink of water-cooling. With the aid of CAE (computer aided engineering), WEDM (wire electrical discharge machining), and the concept of micro-channel design, a heat sink of water-cooling can then be built with the merit of a smaller volume and lower thermal resistance. From this paper, results of the experiment indicate that the thermal resistance of heat sink can be decreased to 0.12 °C/W with input power of 60W, flow rate of 0.6 LPM, and a better heat dissipation with the in input power of 100W or 140W can be revealed.


2013 ◽  
Vol 436 ◽  
pp. 225-232 ◽  
Author(s):  
Emil Udup ◽  
Claudiu Florinel Bîșu ◽  
Miron Zapciu

The main source of heat generation in a spindle is the friction torque in the ball bearing angular contact. The thermal and structural behavior of both spindle shaft/housing and bearings is characterized by the thermal expansion and the rate of heat generation depending on the operating speed. To evaluate the temperature distribution and its effects on the axial and radial deformations a simulation procedure is required. This paper is a presentation of the numerical models performed using the (ANSYS) commercial finite element software in order to assess the thermal behavior effect on the spindle nose axial deformation. Two numerical models were designed and simulated; the first model is a classic spindle in which heat dissipation of the bearings is removed by conduction and convection with the environment and with the second model, the generated heat is removed by water cooling circuits to improve the temperature distribution and axial deformation in the housing and spindle shaft.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Yueguang Deng ◽  
Jing Liu

Broad societal needs have focused attention on technologies that can effectively dissipate huge amount of heat from high power density electronic devices. Liquid metal cooling, which has been proposed in recent years, is fast emerging as a novel and promising solution to meet the requirements of high heat flux optoelectronic devices. In this paper, a design and implementation of a practical liquid metal cooling device for heat dissipation of high performance CPUs was demonstrated. GaInSn alloy with the melting point around 10°C was adopted as the coolant and a tower structure was implemented so that the lowest coolant amount was used. In order to better understand the design procedure and cooling capability, several crucial design principles and related fundamental theories were demonstrated and discussed. In the experimental study, two typical prototypes have been fabricated to evaluate the cooling performance of this liquid metal cooling device. The compared results with typical water cooling and commercially available heat pipes show that the present device could achieve excellent cooling capability. The thermal resistance could be as low as 0.13°C/W, which is competitive with most of the latest advanced CPU cooling devices in the market. Although the cost (about 70 dollars) is still relatively high, it could be significantly reduced to less than 30 dollars with the optimization of flow channel. Considering its advantages of low thermal resistance, capability to cope with extremely high heat flux, stability, durability, and energy saving characteristic when compared with heat pipe and water cooling, this liquid metal cooling device is quite practical for future application.


2013 ◽  
Vol 795 ◽  
pp. 474-478
Author(s):  
Mohd Arif Anuar Mohd Salleh ◽  
Shaiful Rizam Shamsudin ◽  
Azmi Kamardin ◽  
Hafizan Hassan ◽  
Noor Hamidi Mohd Noor

Catastrophic failure is often associated with a large temperature rise. This situation may lead to a drastic deterioration in material strength where a cooling system is important for a smooth system plant operation to prevent catastrophic failure to its equipments, parts or processes. In this study, a part of a failed closed recirculation system water cooling pipe in a steel manufacturing plant in Malaysia has been investigated for detailed failure analysis. A steam leakage of a water cooling pipe with a closed recirculation system operation made of ASTM A106/A (Carbon Steel Pipes for high temp service) was detected. The aim of this study is to explore the evidence related to the water cooling pipe leakage and to investigate the cause of failure. Detailed investigation was carried out by visual inspection, optical microscopy and hardness testing. With the evidence obtained, due to presence of water scale and prolonged overheating, decarburization had occurred. During decarburization, it was found that carbon elements from inner surface tube had depleted through the outer tube surface. The accumulation of carbon elements on the outer tube surface appears to show significantly higher brittle zone in the outer tube and with the presence of tensile stress developed from operating thermal cycle which subsequently resulted in crack. It can be concluded that the water cooling pipe leakage was due to thermal fatigue.


Author(s):  
Muhammad Sawaludin ◽  
Hasan Maksum ◽  
Wagino Wagino

This research was motivated by the large number of consumer requests for mechanics in workshops to replace the radiator coolant in diesel engines with reguler water. This research used an experimental research approach. The experimental research was often used to find the effect of existing variable and to test the hypotheses. Based on the results of testing and data analysis that have been carried out can be seen: there was an average decrease in the temperature of the cooling media from the engine due to using the cooling media from the manufacturer, a decrease in the rate of heat dissipation between reguler water and Prestone on each rotation with an average of 4.97%, the water with TOP 1 Coolant 5.11% and the water with Toyota SLCC at 6.64%. Based on the analysis of research data and statistical tests, it was concluded that the use of cooling media from the manufacturer can increase the heat transfer coefficient of the working fluid of the radiator, so that it can reduce the engine heat level and increase the rate of coolant heat dissipation. Penelitian ini dilatarbelakangi oleh banyaknya permintaan konsumen kepada mekanik di bengkel untuk mengganti air radiator pada mesin diesel dengan air biasa Penelitian ini digolongkan pada penelitian pendekatan eksperimen. Penelitian eksperimen sering digunakan untuk mencari pengaruh di antara variabel-variabel yang ada serta untuk pengujian hipotesis. Hasil pengujian dan analisis data yang telah dilakukan dapat diketahui: Terdapat rata-rata penurunan suhu media pendingin dari mesin akibat menggunakan media pendingin asal pabrikan, penurunan laju pembuangan panas antara air biasa dengan Prestone pada masing-masing putaran dengan rata-rata 4,97%, air dengan TOP 1 Coolant 5,11% dan air dengan Toyota SLCC sebesar 6,64%. Berdasarkan analisis data penelitian dan uji statistik yang dilakukan disimpulkan bahwa penggunaan media pendingin asal pabrikan dapat memperbesar koefisien perpindahan panas fluida kerja radiator sehingga dapat menurunkan tingkat panas mesin dan meningkatkan laju pembuangan panas cairan pendingin


2011 ◽  
Vol 308-310 ◽  
pp. 2422-2427 ◽  
Author(s):  
Maw Tyan Sheen ◽  
Ming Der Jean ◽  
Yu Tsun Lai

This paper introduces a module using the RGB-based LED design to improve the thermal management of a mixied white light LED and describes a system for heat dissipation in illuminated, high-power LED arrays. Mixed light LEDs can be produced by combining appropriate amounts of light from the red, green and blue LEDs in an array. A LED cooling system, using a micro- tube water-cooling device, was fabricated. Recycling water in the system, gave more efficient convection and the heat created by the LEDs was easily removed, in the experiments. It was shown that micro-tube water-cooling systems rendered an improvement in thermal management that effectively decreases the thermal resistance and provides very good thermal dissipation. Furthermore, the results of experiment and simulation demonstrated that a micro-tube water-cooling system is very effective in heat dissipation in LEDs and the fabrication of practical micro-water tube cooling devices for mixing light LEDs was feasible and useful


Author(s):  
Kazuma Obata ◽  
Takashi Fukue ◽  
Koichi Hirose ◽  
Mamoru Kikuchi ◽  
Yasuhiko Ueda ◽  
...  

This study describes a possibility of an improvement of water cooling devices for high-power electronic devices such as inverters for electric vehicles by using a combination of micro heat sinks and miniature vortex generators. Power devices such as IGBT (Insulated Gate Bipolar Transistor) are widely used for controlling an operation of electronic vehicles and hybrid vehicles. Due to the improvement of the performance of the power devices, the heat dissipation density from these devices becomes higher. The water cooling is the commonest method for dissipating heat from the inverter of the electronic vehicles. Therefore the improvement of the water cooling technology is significantly needed in order to manage the increase of the heat dissipation density. We are now trying to develop a high-performance water cooling device for dissipating the high heat flux from the inverters in the electric vehicles by using a combination of a fine miniature heat sink and a miniature vortex generator. The combination of the miniature heat sink and the vortex generator may increase heat transfer performance of the heat exchanger while inhibiting an increase of pressure drop by generating a swirling turbulent flow in a clearance between the heat sink fins. In this study, the water cooling performance in the narrow flow passage, which simulates the flow passage in the water cooling device, with the miniature heat sink and the miniature vortex generators was investigated by using 3-dimentional CFD analysis. From the analysis, we conclude that the combination of the miniature heat sink and the vortex generator was effective for the heat transfer enhancement in the narrow flow passage of the water cooling device while inhibiting the generation of the pressure drop when we can use the combination with the appropriate manner.


2019 ◽  
Vol 29 (10) ◽  
pp. 3893-3907
Author(s):  
Yuanlong Chen ◽  
Tingbo Hou ◽  
Xiaochao Zhou

Purpose The purpose of this paper is to ensure adequate thermal management to remove and dissipate the heat produced by a light-emitting diode (LED) and to guarantee reliable and safe operation. Design/methodology/approach A three-dimensional (3-D) computational fluid dynamics (CFD) model was used to analyze the distribution of fluid velocities among microchannels at four different aspect ratios. Findings The results showed that at the same inlet flow rate, the larger the aspect ratio of the microchannels, the better the uniformity of the internal fluid velocity and thus better the heat dissipation performance on the surface of the high-power LED chip. In addition, the thermal performance of a high-power LED water cooling system with four different aspect ratios’ microchannel structures is further studied experimentally. Specifically, the coupling effect between the fluid velocity distribution in the microchannels and the heat dissipation performance of a high-power LED water cooling system is qualitatively analyzed and compared with the simulation results of the fluid velocity distribution. The results fully demonstrated that a larger aspect ratio of the microchannels results in better heat dissipation performance on the surface of the high-power LED chip. Originality/value Optimizing the structural parameters to facilitate a relatively uniform velocity distribution to improve the water cooling system performance may be a key factor to be considered.


2016 ◽  
Vol 138 (1) ◽  
Author(s):  
Dustin W. Demetriou ◽  
Vinod Kamath ◽  
Howard Mahaney

The generation-to-generation information technology (IT) performance and density demands continue to drive innovation in data center cooling technologies. For many applications, the ability to efficiently deliver cooling via traditional chilled air cooling approaches has become inadequate. Water cooling has been used in data centers for more than 50 years to improve heat dissipation, boost performance, and increase efficiency. While water cooling can undoubtedly have a higher initial capital cost, water cooling can be very cost effective when looking at the true life cycle cost of a water-cooled data center. This study aims at addressing how one should evaluate the true total cost of ownership (TCO) for water-cooled data centers by considering the combined capital and operational cost for both the IT systems and the data center facility. It compares several metrics, including return-on-investment for three cooling technologies: traditional air cooling, rack-level cooling using rear door heat exchangers, and direct water cooling (DWC) via cold plates. The results highlight several important variables, namely, IT power, data center location, site electric utility cost, and construction costs and how each of these influences the TCO of water cooling. The study further looks at implementing water cooling as part of a new data center construction project versus a retrofit or upgrade into an existing data center facility.


Sign in / Sign up

Export Citation Format

Share Document