scholarly journals The Different Immune Responses by Age Are due to the Ability of the Fetal Immune System to Secrete Primal Immunoglobulins Responding to Unexperienced Antigens

2022 ◽  
Vol 18 (2) ◽  
pp. 617-636
Author(s):  
Jangho Lee ◽  
Kyoungshik Cho ◽  
Hyejin Kook ◽  
Suman Kang ◽  
Yunsung Lee ◽  
...  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


2021 ◽  
Vol 34 (01) ◽  
pp. 003-016
Author(s):  
John Michel Warner

AbstractAccording to Hahnemann, homoeopathic medicines must be great immune responses inducers. In crude states, these medicines pose severe threats to the immune system. So, the immune-system of an organism backfires against the molecules of the medicinal substances. The complex immune response mechanism activated by the medicinal molecules can handle any threats which are similar to the threats posed by the medicinal molecules. The intersectional operation of the two sets, medicine-induced immune responses and immune responses necessary to cure diseases, shows that any effective homoeopathic medicine, which is effective against any disease, can induce immune responses which are necessary to cure the specific disease. In this article, this mechanism has been exemplified by the action of Silicea in human body. Also, a neuroimmunological assessment of the route of medicine administration shows that the oral cavity and the nasal cavity are two administration-routes where the smallest doses (sometimes even few molecules) of a particular homoeopathic medicine induce the most effective and sufficient (in amount) purgatory immune responses. Administering the smallest unitary doses of Silicea in the oral route can make significant changes in the vital force line on the dose–response relationship graph. The dose–response relationship graph further implicates that the most effective dose of a medicine must be below the lethality threshold. If multiple doses of any medicine are administered at same intervals, the immune-system primarily engages with the medicinal molecules; but along the passage of time, the engagement line splits into two: one engages with the medicinal molecules and another engages with diseases. The immune system's engagement with the diseases increases along the passage of time, though the engagement with the medicinal molecules gradually falls with the administration of descending doses. Necessarily, I have shown through mathematical logic that the descending doses, though they seem to be funny, can effectively induce the most effective immune responses.


2021 ◽  
Vol 22 (15) ◽  
pp. 8037
Author(s):  
Akshita Chauhan ◽  
Tabassum Khan ◽  
Abdelwahab Omri

The aim of cancer immunotherapy is to reactivate autoimmune responses to combat cancer cells. To stimulate the immune system, immunomodulators, such as adjuvants, cytokines, vaccines, and checkpoint inhibitors, are extensively designed and studied. Immunomodulators have several drawbacks, such as drug instability, limited half-life, rapid drug clearance, and uncontrolled immune responses when used directly in cancer immunotherapy. Several strategies have been used to overcome these limitations. A simple and effective approach is the loading of immunomodulators onto gold-based nanoparticles (GNPs). As gold is highly biocompatible, GNPs can be administered intravenously, which aids in increasing cancer cell permeability and retention time. Various gold nanoplatforms, including nanospheres, nanoshells, nanorods, nanocages, and nanostars have been effectively used in cancer immunotherapy. Gold nanostars (GNS) are one of the most promising GNP platforms because of their unusual star-shaped geometry, which significantly increases light absorption and provides high photon-to-heat conversion efficiency due to the plasmonic effect. As a result, GNPs are a useful vehicle for delivering antigens and adjuvants that support the immune system in killing tumor cells by facilitating or activating cytotoxic T lymphocytes. This review represents recent progress in encapsulating immunomodulators into GNPs for utility in a cancer immunotherapeutic regimen.


2021 ◽  
Vol 22 ◽  
Author(s):  
Jizong Jiang

Abstract: Vaccination with small antigens, such as proteins, peptides, or nucleic acids, is used to activate the immune system and trigger the protective immune responses against a pathogen. Currently, nanovaccines are undergoing development instead of conventional vaccines. The size of nanovaccines is in the range of 10–500 nm, which enables them to be readily taken up by cells and exhibit improved safety profiles. However, low-level immune responses, as the removal of redundant pathogens, trigger counter-effective activation of the immune system invalidly and present a challenging obstacle to antigen recognition and its uptake via antigen-presenting cells (APCs). In addition, toxicity can be substantial. To overcome these problems, a variety of cell-penetrating peptide (CPP)-mediated vaccine delivery systems based on nanotechnology have been proposed, most of which are designed to improve the stability of antigens in vivo and their delivery into immune cells. CPPs are particularly attractive components of antigen delivery. Thus, the unique translocation property of CPPs ensures that they remain an attractive carrier with the capacity to deliver cargo in an efficient manner for the application of drugs, gene transfer, protein, and DNA/RNA vaccination delivery. CPP-mediated nanovaccines can enhance antigen uptake, processing, and presentation by APCs, which are the fundamental steps in initiating an immune response. This review describes the different types of CPP-based nanovaccines delivery strategies.


2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Ragnhild Inderberg Vestrum ◽  
Torunn Forberg ◽  
Birgit Luef ◽  
Ingrid Bakke ◽  
Per Winge ◽  
...  

The roles of host-associated bacteria have gained attention lately, and we now recognise that the microbiota is essential in processes such as digestion, development of the immune system and gut function. In this study, Atlantic cod larvae were reared under germ-free, gnotobiotic and conventional conditions. Water and fish microbiota were characterised by 16S rRNA gene analyses. The cod larvae’s transcriptional responses to the different microbial conditions were analysed by a custom Agilent 44 k oligo microarray. Gut development was assessed by transmission electron microscopy (TEM). Water and fish microbiota differed significantly in the conventional treatment and were dominated by different fast-growing bacteria. Our study indicates that components of the innate immune system of cod larvae are downregulated by the presence of non-pathogenic bacteria, and thus may be turned on by default in the early larval stages. We see indications of decreased nutrient uptake in the absence of bacteria. The bacteria also influence the gut morphology, reflected in shorter microvilli with higher density in the conventional larvae than in the germ-free larvae. The fact that the microbiota alters innate immune responses and gut morphology demonstrates its important role in marine larval development.


2020 ◽  
Author(s):  
Shouyong Ju ◽  
Hanqiao Chen ◽  
Shaoying Wang ◽  
Jian Lin ◽  
Raffi V Aroian ◽  
...  

AbstractPathogen recognition and triggering pattern of host innate immune system is critical to understanding pathogen-host interaction. It is generally accepted that the microbial infection can be recognized by host via pattern-triggered immunity (PTI) or effector-triggered immunity (ETI) responses. Recently, non-PRR-mediated cellular surveillance systems have been reported as an important supplement strategy to PTI and ETI responses. However, the mechanism of how surveillance systems sense pathogens and trigger innate immune responses is largely unknown. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found a new approach for surveillance systems to sense the pathogens through no-PPRs patterns. We reported C. elegans can monitor intracellular energy status through the mitochondrial surveillance system to triggered innate immune responses against pathogenic attack via AMP-activated protein kinase (AMPK). Consider that the mitochondria surveillance systems and AMPK are conserved components from worms to mammals, our study suggests that disrupting mitochondrial homeostasis to activate the immune system through AMPK-dependent pathways may widely existing in animals.


2021 ◽  
pp. 160-197
Author(s):  
Elena Locci ◽  
Silvia Raymond

In recent years, immunotherapy has revolutionized the treatment of cancer; however, inflammatory reactions in healthy tissues often have side effects that can be serious and lead to permanent discontinuation of treatment. This toxicity is not yet well understood and is a major obstacle to the use of immunotherapy. When the immune system is so severely activated, the resulting inflammatory reaction can have detrimental effects and sometimes serious damage to healthy tissue. We wanted to know if there was a difference between an optimal immune response that aims to kill cancer and an unwanted response that could affect healthy tissue. Identifying the distinctive elements between these two immune responses allows the development of new, more effective and less toxic therapeutic approaches. Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


2020 ◽  
Vol 6 (10) ◽  
pp. 206-233
Author(s):  
S. Bulgakova ◽  
N. Romanchuk

The availability of innovative technologies, such as next-generation sequencing and correlated bioinformatics tools, allows deeper investigation of the cross-network relationships between the microbiota and human immune responses. Immune homeostasis is the balance between immunological tolerance and inflammatory immune responses — a key feature in the outcome of health or disease. A healthy microbiota is the qualitative and quantitative ratio of diverse microbes of individual organs and systems, maintaining the biochemical, metabolic and immune equilibrium of the macroorganism necessary to preserve human health. The studies of P. I. Romanchuk found that the microbiota is a key element potentially capable of influencing antigen functions to induce a protective immune response and the ability of the immune system to adequately respond to antigenic stimulation (vaccine efficacy) by acting as an immunological modulator as well as a natural vaccine adjuvant. The mechanisms underlying the crosstalk between the gut microbiota and the immune system play a crucial role, especially at an early age (early gut microbiota forms immunological functions). New interactions, along with other genetic and environmental factors, lead to a certain composition and richness of the microbiota, which can diversify the individual response to vaccinations. Variations in microbial communities may explain the geographical effectiveness of vaccination. Modern technologies for quantifying the specific and functional characteristics of the microbiota of the gastrointestinal tract, along with fundamental and new concepts in the field of immunology, have revealed numerous ways in which the interaction of the host and microbiota proceeds favorably, neutrally or unfavorably. The gut microbiota has a strong influence on the shape and quality of the immune system, respectively, the immune system determines the composition and localization of the microbiota. Thus, a healthy microbiota directly modulates intestinal and systemic immune homeostasis. The new managed healthy biomicrobiota and personalized functional and balanced nutrition of the “brain and microbiota” is a patient's long-term medical program that allows the combined use of nutritional epigenetics and pharmacepigenetics, and most importantly, an increase in the protective mechanisms of immunity.


2021 ◽  
Author(s):  
Phillip Wibisono ◽  
Shawndra Wibisono ◽  
Jan Watteyne ◽  
Chia-Hui Chen ◽  
Durai Sellegounder ◽  
...  

A key question in current immunology is how the innate immune system generates high levels of specificity. Like most invertebrates, Caenorhabditis elegans does not have an adaptive immune system and relies solely on innate immunity to defend itself against pathogen attacks, yet it can still differentiate different pathogens and launch distinct innate immune responses. Here, we have found that functional loss of NMUR-1, a neuronal GPCR homologous to mammalian receptors for the neuropeptide neuromedin U, has diverse effects on C. elegans survival against various bacterial pathogens. Transcriptomic analyses and functional assays revealed that NMUR-1 modulates C. elegans transcription activity by regulating the expression of transcription factors, which, in turn, controls the expression of distinct immune genes in response to different pathogens. Our study has uncovered a molecular basis for the specificity of C. elegans innate immunity that could provide mechanistic insights into understanding the specificity of vertebrate innate immunity.


Sign in / Sign up

Export Citation Format

Share Document