scholarly journals UCHL1 Is a Putative Tumor Suppressor in Ovarian Cancer Cells and Contributes to Cisplatin Resistance

2013 ◽  
Vol 4 (8) ◽  
pp. 662-670 ◽  
Author(s):  
Chengmeng Jin ◽  
Wei Yu ◽  
Xiaoyan Lou ◽  
Fan Zhou ◽  
Xu Han ◽  
...  
2022 ◽  
Vol 23 (1) ◽  
pp. 535
Author(s):  
Robert J. Rabelo-Fernández ◽  
Ginette S. Santiago-Sánchez ◽  
Rohit K. Sharma ◽  
Abiel Roche-Lima ◽  
Kelvin Carrasquillo Carrion ◽  
...  

Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, β-galactosidase (β-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan–Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.


Author(s):  
Yu-Jie Dong ◽  
Wei Feng ◽  
Yan Li

Ovarian cancer is a deadly gynecological malignancy with resistance to cisplatin a major clinical problem. We evaluated a role of long non-coding (lnc) RNA HOTTIP (HOXA transcript at the distal tip) in the cisplatin resistance of ovarian cancer cells, using paired cisplatin sensitive and resistant A2780 cells along with the SK-OV-3 cells. HOTTIP was significantly elevated in cisplatin resistant cells and its silencing reversed the cisplatin resistance of resistant cells. HOTTIP was found to sponge miR-205 and therefore HOTTIP silenced cells had higher levels of miR-205. Downregulation of miR-205 could attenuate HOTTIP-silencing effects whereas miR-205 upregulation in resistant cells was found to re-sensitize cells to cisplatin. HOTTIP silencing also led to reduced NF-κB activation, clonogenic potential and the reduced expression of stem cell markers SOX2, OCT4, and NANOG, an effect that could be attenuated by miR-205. Finally, ZEB2 was identified as the gene target of miR-205, thus completing the elucidation of HOTTIP-miR-205-ZEB2 as the novel axis which is functionally involved in the determination of cisplatin resistance in ovarian cancer cells.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Lei Zhang ◽  
Qing Zhou ◽  
Qiongzi Qiu ◽  
Ling Hou ◽  
Mengting Wu ◽  
...  

Abstract Background Emerging evidence has shown that circular RNAs (circRNAs) play essential roles in cancer biology and are potential biomarkers and targets for cancer therapy. However, the expression and function of circRNAs in ovarian carcinogenesis and its progression remain elusive. Methods RNA sequencing was performed to reveal circRNA expression profiles in ovarian cancerous and normal tissues. Single-molecule RNA in-situ hybridization was used to quantify circPLEKHM3 expression in tumor tissues. Cell-based in-vitro and in-vivo assays were subsequently conducted to support the clinical findings. Results CircPLEKHM3 was identified as one of the most significantly down-regulated circRNAs in ovarian cancer tissues compared with normal tissues. Its expression was further decreased in peritoneal metastatic ovarian carcinomas compared to primary ovarian carcinomas. Patients with lower circPLEKHM3 tend to have a worse prognosis. Functionally, circPLEKHM3 overexpression inhibited cell growth, migration and epithelial–mesenchymal transition, whereas its knockdown exerted an opposite role. Further analyses showed that circPLEKHM3 sponged miR-9 to regulate the endogenous expression of BRCA1, DNAJB6 and KLF4, and consequently inactivate AKT1 signaling. In addition, AKT inhibitor MK-2206 could block the tumor-promoting effect of circPLEKHM3 depletion, and potentiate Taxol-induced growth inhibition of ovarian cancer cells. Conclusions Our findings demonstrated that circPLEKHM3 functions as a tumor suppressor in ovarian cancer cells by targeting the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis and may be used as a prognostic indicator and therapeutic target in ovarian cancer patients. The new strategy for treating ovarian cancer by a combination therapy of Taxol with MK-2206 is worth further investigation, especially in ovarian cancer patients with loss of circPLEKHM3 expression.


Sign in / Sign up

Export Citation Format

Share Document