scholarly journals Foraminiferal Evidence of Younger Dryas Age Cooling on the British Columbia Shelf

2007 ◽  
Vol 49 (3) ◽  
pp. 409-427 ◽  
Author(s):  
R. Timothy Patterson ◽  
Jean-Pierre Guilbault ◽  
Richard E. Thomson ◽  
John L. Luternauer

ABSTRACT Cluster analysis of foraminifera from a ~12,000-9000 radiocarbon year old piston core from Goose Island Trough, Queen Charlotte Sound, indicates that a cold interval correlative with the Younger Dryas stadial occurred during a shallow water phase. The reduction in depth was caused by the passage across the area, between 11,500 and 10,000 years BP, of a glacial forebulge associated with the retreat of the Late Wisconsinian ice sheets. Published sedimentological evidence indicate that water depths decreased to ~75-90 m, placing the site above the permanent North Pacific pycnocline (100 m). Low salinity-near glacial conditions, at these depths, between -11,100 and 10,000 years BP were recognized by abundant populations of Cassidulina reniforme and lslandiella helenae. This cold interval has also been recognized in cores from elsewhere in Queen Charlotte Sound. The depressed salinity and temperature may have resulted from a modification of regional weather patterns. Decreased mean continental summer temperatures could have reduced the seasonal influence of the North Pacific High and lengthened that of the Aleutian Low. This would have resulted in a near continuous onshore surface Ekman transport and enhanced coastal runoff, effectively blocking the movement onto the shelf of deep, saline, warm water of the California Undercurrent. The resultant isolated inshore basin comprised of present-day Hecate Strait and Queen Charlotte Sound is tentatively named the "Hecate Sea". By ~10,000 years BP, weather and ocean circulation had returned to near modern patterns as indicated by the disappearance of lslandiella helenae and by the development of an Epistominella vitrea - dominated biofacies.

2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2009 ◽  
Vol 39 (6) ◽  
pp. 1317-1339 ◽  
Author(s):  
Robert S. Pickart ◽  
Alison M. Macdonald ◽  
G. W. K. Moore ◽  
Ian A. Renfrew ◽  
John E. Walsh ◽  
...  

Abstract The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres.


2020 ◽  
Vol 20 (3) ◽  
pp. 11-18
Author(s):  
Hyeon-Cheol Lee ◽  
Young-Jun Cho ◽  
Byunghwan Lim ◽  
Seung-Bum Kim

In this study, weather patterns (WPs) associated with the heat wave in South Korea are objectively classified by applying <i>K</i>-means clustering analysis. The representative weather patterns that caused the heat wave were divided into three WPs, namely WP 1, WP 2, and WP 3. The heat wave over the Korean Peninsula was mainly related to the expansion of the North Pacific High (NPH). Moreover, we analyzed the relationship between casualties and WPs of the heat wave. In WP 1, the isobar of NPH was located in the southern part of South Korea. Most casualties (18 people) occurred in this region. In WP 2, NPH was distributed throughout South Korea, with nationwide casualties of 44 people. Moreover, the duration of the heat wave for WP 2 was the longest, at 4.5 days. WP 3 occurred mainly in June, when the NPH was not yet developed, presenting the smallest number of casualties.


2007 ◽  
Vol 20 (8) ◽  
pp. 1523-1538 ◽  
Author(s):  
Xiaojie Zhu ◽  
Jilin Sun ◽  
Zhengyu Liu ◽  
Qinyu Liu ◽  
Jonathan E. Martin

Abstract An analysis of cyclone activity in winter associated with years of strong and weak Aleutian low in the North Pacific is presented. From 1958 to 2004, 10 winters with a strong Aleutian low are defined as the strong years, while 8 winters with a weak Aleutian low are defined as the weak years. Employing a system-centered Lagrangian method, some characteristics of the cyclone activity in both sets of years are revealed. The cyclone frequency, duration, and intensity are nearly the same in both strong and weak years. The cyclone tracks in the strong years are more zonal than those in the weak years. More intense cyclone events and more large cyclone cases occur in strong years than in weak years and the deepening of cyclones in strong years is stronger than that in weak years. The analyses of geopotential height, wind, stationary Rossby wavenumber, and Eady growth rate index at 500 or 300 hPa reveal that conditions are favorable for more zonal tracks and greater cyclone growth in strong years than in weak years. An estimation of the relative change of cyclone intensity and the relative change of Aleutian low intensity is made, which shows that the interannual change of cyclone intensity is about 73% of the interannual change of Aleutian low intensity. This result suggests that the evolution of individual cyclones may be a significant driver of changes in the Aleutian low.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay2915 ◽  
Author(s):  
Summer K. Praetorius ◽  
Alan Condron ◽  
Alan C. Mix ◽  
Maureen H. Walczak ◽  
Jennifer L. McKay ◽  
...  

Columbia River megafloods occurred repeatedly during the last deglaciation, but the impacts of this fresh water on Pacific hydrography are largely unknown. To reconstruct changes in ocean circulation during this period, we used a numerical model to simulate the flow trajectory of Columbia River megafloods and compiled records of sea surface temperature, paleo-salinity, and deep-water radiocarbon from marine sediment cores in the Northeast Pacific. The North Pacific sea surface cooled and freshened during the early deglacial (19.0-16.5 ka) and Younger Dryas (12.9-11.7 ka) intervals, coincident with the appearance of subsurface water masses depleted in radiocarbon relative to the sea surface. We infer that Pacific meltwater fluxes contributed to net Northern Hemisphere cooling prior to North Atlantic Heinrich Events, and again during the Younger Dryas stadial. Abrupt warming in the Northeast Pacific similarly contributed to hemispheric warming during the Bølling and Holocene transitions. These findings underscore the importance of changes in North Pacific freshwater fluxes and circulation in deglacial climate events.


2011 ◽  
Vol 7 (2) ◽  
pp. 487-499 ◽  
Author(s):  
V. Kamphuis ◽  
S. E. Huisman ◽  
H. A. Dijkstra

Abstract. To understand the three-dimensional ocean circulation patterns that have occurred in past continental geometries, it is crucial to study the role of the present-day continental geometry and surface (wind stress and buoyancy) forcing on the present-day global ocean circulation. This circulation, often referred to as the Conveyor state, is characterised by an Atlantic Meridional Overturning Circulation (MOC) with a deep water formation at northern latitudes and the absence of such a deep water formation in the North Pacific. This MOC asymmetry is often attributed to the difference in surface freshwater flux: the Atlantic as a whole is a basin with net evaporation, while the Pacific receives net precipitation. This issue is revisited in this paper by considering the global ocean circulation on a retrograde rotating earth, computing an equilibrium state of the coupled atmosphere-ocean-land surface-sea ice model CCSM3. The Atlantic-Pacific asymmetry in surface freshwater flux is indeed reversed, but the ocean circulation pattern is not an Inverse Conveyor state (with deep water formation in the North Pacific) as there is relatively weak but intermittently strong deep water formation in the North Atlantic. Using a fully-implicit, global ocean-only model the stability properties of the Atlantic MOC on a retrograde rotating earth are also investigated, showing a similar regime of multiple equilibria as in the present-day case. These results indicate that the present-day asymmetry in surface freshwater flux is not the most important factor setting the Atlantic-Pacific salinity difference and, thereby, the asymmetry in the global MOC.


2012 ◽  
Vol 61-64 ◽  
pp. 106-113 ◽  
Author(s):  
L. Menviel ◽  
A. Timmermann ◽  
O. Elison Timm ◽  
A. Mouchet ◽  
A. Abe-Ouchi ◽  
...  

1967 ◽  
Vol 24 (3) ◽  
pp. 581-594 ◽  
Author(s):  
W. Percy Wickett

Annual concentrations of zooplankton off California varied directly, and concentrations in the western Bering Sea varied indirectly with calculated southerly components of Ekman transport in the previous year at 50°N,140°W. This point is in the area in which surface subarctic water and the deeper currents divide north and south. The underlying geostrophic flow requires approximately 1 year to reach each downstream sampling area. Summer concentrations of zooplankton at Ocean Station P, 50°N,145°W, varied with southerly and westerly components at 50°N,160°W during the previous winter. Fifty to sixty per cent of the variance of the annual concentration in zooplankton appears to be due to advection of surface water.


Sign in / Sign up

Export Citation Format

Share Document