scholarly journals Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster

Author(s):  
Perumal Subramanian ◽  
Jaime J Jayapalan ◽  
Puteri Abdul-Rahman ◽  
Manjula Arumugam ◽  
Onn Hashim

Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie rhythmic physiology in the fruit fly, Drosophila melanogaster. Self-sustained autonomous circadian oscillations were documented all over the organs of the fly. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. We have used the whole fly for the proteomic study as performed in typical proteotypic peptide (PTP) studies and followed the same protocol with trypsin digestion. Total protein collected from fly samples harvested at 4h intervals over the 24-h period were subjected to two dimensional (2-D) gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. A significant variation in the expression of 88 proteins over the 24-h period was observed. Our present results suggested that the synthesis/regulation of numerous proteins is regulated by the biological clock in D. melanogaster. Relatively higher number of proteins was upregulated during nighttime as compared to daytime. Conclusion. As these rhythmically varying proteins/enzymes involve in metabolism, muscle activities, ion channels, protein synthesis, redox homeostasis and apoptosis our results indicate that these cellular processes could be regulated at the level of temporal expression of protein profile.

2016 ◽  
Author(s):  
Perumal Subramanian ◽  
Jaime J Jayapalan ◽  
Puteri Abdul-Rahman ◽  
Manjula Arumugam ◽  
Onn Hashim

Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie rhythmic physiology in the fruit fly, Drosophila melanogaster. Self-sustained autonomous circadian oscillations were documented all over the organs of the fly. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. We have used the whole fly for the proteomic study as performed in typical proteotypic peptide (PTP) studies and followed the same protocol with trypsin digestion. Total protein collected from fly samples harvested at 4h intervals over the 24-h period were subjected to two dimensional (2-D) gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. A significant variation in the expression of 88 proteins over the 24-h period was observed. Our present results suggested that the synthesis/regulation of numerous proteins is regulated by the biological clock in D. melanogaster. Relatively higher number of proteins was upregulated during nighttime as compared to daytime. Conclusion. As these rhythmically varying proteins/enzymes involve in metabolism, muscle activities, ion channels, protein synthesis, redox homeostasis and apoptosis our results indicate that these cellular processes could be regulated at the level of temporal expression of protein profile.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2080 ◽  
Author(s):  
Perumal Subramanian ◽  
Jaime J. Jayapalan ◽  
Puteri S. Abdul-Rahman ◽  
Manjula Arumugam ◽  
Onn H. Hashim

Background.Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly,Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation inD. melanogaster.Materials and Methods.Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software.Results.A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of theD. melanogasterproteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription.Conclusion.Our data suggests that a wide range of proteins synthesized by the fruit fly,D. melanogaster, is under the regulation of the biological clock.


2011 ◽  
Vol 49 ◽  
pp. 19-35 ◽  
Author(s):  
Nicholas R. J Glossop

The discovery of the period gene mutants in 1971 provided the first evidence that daily rhythms in the sleep–wake cycle of a multicellular organism, the fruit fly Drosophila melanogaster, had an underlying genetic basis. Subsequent research has established that the biological clock mechanism in flies and mammals is strikingly similar and functions as a bimodal switch, simultaneously turning on one set of genes and turning off another set and then reversing the process every 12 h. In this chapter, the current model of the clock mechanism in Drosophila will be presented. This relatively basic model will then be used to outline the general rules that govern how the biological clock operates in mammals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Milan O. Urban ◽  
Sébastien Planchon ◽  
Irena Hoštičková ◽  
Radomira Vanková ◽  
Peter Dobrev ◽  
...  

The present study aims to investigate the response of rapeseed microspore-derived embryos (MDE) to osmotic stress at the proteome level. The PEG-induced osmotic stress was studied in the cotyledonary stage of MDE of two genotypes: Cadeli (D) and Viking (V), previously reported to exhibit contrasting leaf proteome responses under drought. Two-dimensional difference gel electrophoresis (2D-DIGE) revealed 156 representative protein spots that have been selected for MALDI-TOF/TOF analysis. Sixty-three proteins have been successfully identified and divided into eight functional groups. Data are available via ProteomeXchange with identifier PXD024552. Eight selected protein accumulation trends were compared with real-time quantitative PCR (RT-qPCR). Biomass accumulation in treated D was significantly higher (3-fold) than in V, which indicates D is resistant to osmotic stress. Cultivar D displayed resistance strategy by the accumulation of proteins in energy metabolism, redox homeostasis, protein destination, and signaling functional groups, high ABA, and active cytokinins (CKs) contents. In contrast, the V protein profile displayed high requirements of energy and nutrients with a significant number of stress-related proteins and cell structure changes accompanied by quick downregulation of active CKs, as well as salicylic and jasmonic acids. Genes that were suitable for gene-targeting showed significantly higher expression in treated samples and were identified as phospholipase D alpha, peroxiredoxin antioxidant, and lactoylglutathione lyase. The MDE proteome profile has been compared with the leaf proteome evaluated in our previous study. Different mechanisms to cope with osmotic stress were revealed between the genotypes studied. This proteomic study is the first step to validate MDE as a suitable model for follow-up research on the characterization of new crossings and can be used for preselection of resistant genotypes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaochan Xu ◽  
Wei Yang ◽  
Binghui Tian ◽  
Xiuwen Sui ◽  
Weilai Chi ◽  
...  

AbstractThe fruit fly, Drosophila melanogaster, has been used as a model organism for the molecular and genetic dissection of sleeping behaviors. However, most previous studies were based on qualitative or semi-quantitative characterizations. Here we quantified sleep in flies. We set up an assay to continuously track the activity of flies using infrared camera, which monitored the movement of tens of flies simultaneously with high spatial and temporal resolution. We obtained accurate statistics regarding the rest and sleep patterns of single flies. Analysis of our data has revealed a general pattern of rest and sleep: the rest statistics obeyed a power law distribution and the sleep statistics obeyed an exponential distribution. Thus, a resting fly would start to move again with a probability that decreased with the time it has rested, whereas a sleeping fly would wake up with a probability independent of how long it had slept. Resting transits to sleeping at time scales of minutes. Our method allows quantitative investigations of resting and sleeping behaviors and our results provide insights for mechanisms of falling into and waking up from sleep.


1999 ◽  
Vol 19 (2) ◽  
pp. 1159-1170 ◽  
Author(s):  
Madeline A. Crosby ◽  
Chaya Miller ◽  
, Tamar Alon ◽  
Kellie L. Watson ◽  
C. Peter Verrijzer ◽  
...  

ABSTRACT The genes of the trithorax group (trxG) inDrosophila melanogaster are required to maintain the pattern of homeotic gene expression that is established early in embryogenesis by the transient expression of the segmentation genes. The precise role of each of the diverse trxG members and the functional relationships among them are not well understood. Here, we report on the isolation of the trxG gene moira(mor) and its molecular characterization. morencodes a fruit fly homolog of the human and yeast chromatin-remodeling factors BAF170, BAF155, and SWI3. mor is widely expressed throughout development, and its 170-kDa protein product is present in many embryonic tissues. In vitro, MOR can bind to itself and it interacts with Brahma (BRM), an SWI2-SNF2 homolog, with which it is associated in embryonic nuclear extracts. The leucine zipper motif of MOR is likely to participate in self-oligomerization; the equally conserved SANT domain, for which no function is known, may be required for optimal binding to BRM. MOR thus joins BRM and Snf5-related 1 (SNR1), two known Drosophila SWI-SNF subunits that act as positive regulators of the homeotic genes. These observations provide a molecular explanation for the phenotypic and genetic relationships among several of the trxG genes by suggesting that they encode evolutionarily conserved components of a chromatin-remodeling complex.


1974 ◽  
Vol 141 (3) ◽  
pp. 609-615 ◽  
Author(s):  
John Shine ◽  
Lynn Dalgarno

The 3′-terminal sequence of 18S ribosomal RNA from Drosophila melanogaster and Saccharomyces cerevisiae was determined by stepwise degradation from the 3′-terminus and labelling with [3H]isoniazid. The sequence G-A-U-C-A-U-U-AOH was found at the 3′-terminus of both 18S rRNA species. Less extensive data for 18S RNA from a number of other eukaryotes are consistent with the same 3′-terminal sequence, and an identical sequence has previously been reported for the 3′-end of rabbit reticulocyte 18S rRNA (Hunt, 1970). These results suggest that the base sequence in this region is strongly conserved and may be identical in all eukaryotes. As the 3′-terminal hexanucleotide is complementary to eukaryotic terminator codons we discuss the possibility that the 3′-end of 18S rRNA may have a direct base-pairing role in the termination of protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document