scholarly journals Lactobacillus plantarum immobilized onto soymilk residue (Okara) for the enhancement of soymilk fermentation and cell survival under simulated gastrointestinal conditions

Author(s):  
Xia Xiudong ◽  
Wang Ying ◽  
Liu Xiaoli ◽  
Li Ying ◽  
Zhou Jianzhong

Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. This study aimed to evaluate the potential of okara, a food-grade byproduct from soymilk production, as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to gastrointestinal (GI) stress. Scanning electron microscopy revealed that the lactobacilli cells attached and bound to okara’s surface. Compared with the free cells (FL), immobilized Lactobacillus plantarum (IL) cells exhibited a significantly higher specific growth rate and shorter lag phase of growth, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedGI stress in vitro that included low pH, low pH plus pepsin, pancreatin, and bile salt. Our results indicate that okara is a new potential immobilization carrier to enhance the growth and glucosidic isoflavone bioconversion activities of L. plantarum in soymilk and improve cell survivability following GI transit.

2016 ◽  
Author(s):  
Xia Xiudong ◽  
Wang Ying ◽  
Liu Xiaoli ◽  
Li Ying ◽  
Zhou Jianzhong

Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. This study aimed to evaluate the potential of okara, a food-grade byproduct from soymilk production, as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to gastrointestinal (GI) stress. Scanning electron microscopy revealed that the lactobacilli cells attached and bound to okara’s surface. Compared with the free cells (FL), immobilized Lactobacillus plantarum (IL) cells exhibited a significantly higher specific growth rate and shorter lag phase of growth, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedGI stress in vitro that included low pH, low pH plus pepsin, pancreatin, and bile salt. Our results indicate that okara is a new potential immobilization carrier to enhance the growth and glucosidic isoflavone bioconversion activities of L. plantarum in soymilk and improve cell survivability following GI transit.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2701 ◽  
Author(s):  
Xia Xiudong ◽  
Wang Ying ◽  
Liu Xiaoli ◽  
Li Ying ◽  
Zhou Jianzhong

Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer forL. plantarum70810 cells. The study also aimed to evaluate the effects of okara-immobilizedL. plantarum70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and freeL. plantarum70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal stresses in vitro that included low pH, low pH plus pepsin, pancreatin, and bile salt. Our results indicate that okara is a new potential immobilization carrier to enhance the growth and glucosidic isoflavone bioconversion activities ofL. plantarumin soymilk and improve cell survivability following simulated gastric and intestinal conditions.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 879
Author(s):  
Seong-Shin Lee ◽  
Jeong-Seok Choi ◽  
Dimas Hand Vidya Paradhipta ◽  
Young-Ho Joo ◽  
Hyuk-Jun Lee ◽  
...  

This research was conducted to determine the effects of selected inoculant on the silage with different wilting times. The ryes were unwilted or wilted for 12 h. Each rye forage was ensiled for 100 d in quadruplicate with commercial inoculant (Lactobacillus plantarum sp.; LPT) or selected inoculant (Lactobacillus brevis 100D8 and Leuconostoc holzapfelii 5H4 at 1:1 ratio; MIX). In vitro dry matter digestibility and in vitro neutral detergent fiber digestibility were highest in the unwilted MIX silages (p < 0.05), and the concentration of ruminal acetate was increased in MIX silages (p < 0.001; 61.4% vs. 60.3%) by the increase of neutral detergent fiber digestibility. The concentration of ruminal ammonia-N was increased in wilted silages (p < 0.001; 34.8% vs. 21.1%). The yeast count was lower in the MIX silages than in the LPT silages (p < 0.05) due to a higher concentration of acetate in MIX silages (p < 0.05). Aerobic stability was highest in the wilted MIX silages (p < 0.05). In conclusion, the MIX inoculation increased aerobic stability and improved fiber digestibility. As a result of the wilting process, ammonia-N in silage decreased but ruminal ammonia-N increased. Notably, the wilted silage with applied mixed inoculant had the highest aerobic stability.


2021 ◽  
pp. 232020682110107
Author(s):  
Sandeep S. Katti ◽  
Kishore Bhat ◽  
Chetana Bogar

Aim: The aim of the current study was to isolate stem cells from various dental sources such as dental pulp, periodontal ligament (PDL), and apical papilla, and to characterize stem cells by staining for the presence/absence of specific surface markers and also to differentiate stem cells into osteogenic, chondrogenic, and adipogenic cell lineages by exposing them to specific growth factors under the ideal conditions. Materials and Methods: A total of 117 samples were included in the study, consisting of 30 pulp, 50 gingival, 35 PDL, and 2 apical papilla samples. The pulp was extirpated and transported to the Central Research Laboratory. Gingival connective tissue was collected from the participants undergoing any crown lengthening procedure or any gingivectomy procedure from the Department of Periodontology. A similar procedure was also followed for apical papilla and PDL. Isolation was done followed by the identification of the cells by immunocytochemistry using different markers. Once the identity of cells was confirmed, these cells were treated with different culture media to attain 70% to 100% confluency. Then the medium was replaced with a conditioning medium containing specific growth factors for differentiation into osteogenic, chondrogenic, and adipogenic cell lineages. Result: In our study, the number of samples collected and processed was 117. The isolation rate of stem cells from the above-collected samples was 70%. Statistical analysis—no statistical analysis was done as there was no variability expected. Conclusion: Our study showed that stem cells could be isolated, differentiated, and characterized from different dental sources.


2021 ◽  
Vol 9 (3) ◽  
pp. 486
Author(s):  
Mi Seon Kang ◽  
Jin Hwa Park ◽  
Hyun Jung Kim

The objective of the study was to develop a predictive model of Salmonella spp. growth in pasteurized liquid egg white (LEW) and to estimate the salmonellosis risk using the baseline model and scenario analysis. Samples were inoculated with six strains of Salmonella, and bacterial growth was observed during storage at 10–37 °C. The primary models were developed using the Baranyi model for LEW. For the secondary models, the obtained specific growth rate (μmax) and lag phase duration were fitted to a square root model and Davey model, respectively, as functions of temperature (R2 ≥ 0.98). For μmax, the values were satisfied within an acceptable range (Af, Bf: 0.70–1.15). The probability of infection (Pinf) due to the consumption of LEW was zero in the baseline model. However, scenario analysis suggested possible salmonellosis for the consumption of LEW. Because Salmonella spp. proliferated much faster in LEW than in egg white (EW) during storage at 20 and 30 °C (p < 0.01), greater Pinf may be obtained for LEW when these products are stored at the same conditions. The developed predictive model can be applied to the risk management of Salmonella spp. along the food chain, including during product storage and distribution.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1860
Author(s):  
Patricia Diez-Echave ◽  
Izaskun Martín-Cabrejas ◽  
José Garrido-Mesa ◽  
Susana Langa ◽  
Teresa Vezza ◽  
...  

Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.


Sign in / Sign up

Export Citation Format

Share Document