scholarly journals Adaptive diversity of beech seedlings under climate change scenarios

Author(s):  
Georgios Varsamis ◽  
Aristotelis C Papageorgiou ◽  
Theodora Merou ◽  
Ioannis Takos ◽  
Chrisovalantis Malesios ◽  
...  

The ability of beech (Fagus sylvatica L.) populations to adapt to the ongoing climate change is crucial for the maintenance of economic and social benefits and for the conservation of biodiversity in Europe and especially in the southeastern part of the continent, where environmental change is expected to be more intense. Beech populations in the region cover multiple ecological conditions at a small geographical range and have a complex biogeographical background involving several postglacial lineages originating from distant or local refugia. In this study, we tested the existing adaptive potential of eight beech populations from two provenances in N.E. Greece (Evros and Drama), under simulated controlled climate change conditions in a growth chamber and in the field. In the growth chamber, simulated conditions of temperature and precipitation for the year 2050 were applied for three years, under two different irrigation schemes, a non-frequent (A1) and a frequent one (A2). Seedling survival, growth and leaf phenological traits were used as adaptive traits. The results showed that beech seedlings were generally able to survive under climate change conditions and showed adaptive differences among provenances and populations. Furthermore, beech genotypes demonstrated an impressive phenotypic plasticity by changing the duration of their growing season allowing them to avoid environmental stress and high selection pressure. Different populations and provenances were connected with different adaptation strategies, that relate mainly to the temporal distribution patterns of precipitation and temperature, rather than the average annual or monthly values of these measures. Additionally, different adaptive strategies appeared among beech seedlings when the same amount of water was distributed differently within each month. This indicates that the physiological response mechanisms of beech individuals are very complex and depend on several interacting parameters. For this reason, the choice of beech provenances for translocation and use in afforestation or reforestation projects should consider the small scale ecotypic diversity of the species and view multiple environmental and climatic parameters in connection to each other.

2019 ◽  
Author(s):  
Georgios Varsamis ◽  
Aristotelis C Papageorgiou ◽  
Theodora Merou ◽  
Ioannis Takos ◽  
Chrisovalantis Malesios ◽  
...  

The ability of beech (Fagus sylvatica L.) populations to adapt to the ongoing climate change is crucial for the maintenance of economic and social benefits and for the conservation of biodiversity in Europe and especially in the southeastern part of the continent, where environmental change is expected to be more intense. Beech populations in the region cover multiple ecological conditions at a small geographical range and have a complex biogeographical background involving several postglacial lineages originating from distant or local refugia. In this study, we tested the existing adaptive potential of eight beech populations from two provenances in N.E. Greece (Evros and Drama), under simulated controlled climate change conditions in a growth chamber and in the field. In the growth chamber, simulated conditions of temperature and precipitation for the year 2050 were applied for three years, under two different irrigation schemes, a non-frequent (A1) and a frequent one (A2). Seedling survival, growth and leaf phenological traits were used as adaptive traits. The results showed that beech seedlings were generally able to survive under climate change conditions and showed adaptive differences among provenances and populations. Furthermore, beech genotypes demonstrated an impressive phenotypic plasticity by changing the duration of their growing season allowing them to avoid environmental stress and high selection pressure. Different populations and provenances were connected with different adaptation strategies, that relate mainly to the temporal distribution patterns of precipitation and temperature, rather than the average annual or monthly values of these measures. Additionally, different adaptive strategies appeared among beech seedlings when the same amount of water was distributed differently within each month. This indicates that the physiological response mechanisms of beech individuals are very complex and depend on several interacting parameters. For this reason, the choice of beech provenances for translocation and use in afforestation or reforestation projects should consider the small scale ecotypic diversity of the species and view multiple environmental and climatic parameters in connection to each other.


2019 ◽  
Author(s):  
Georgios Varsamis ◽  
Aristotelis C Papageorgiou ◽  
Theodora Merou ◽  
Ioannis Takos ◽  
Chrisovalantis Malesios ◽  
...  

The ability of beech (Fagus sylvatica L.) populations to adapt to the ongoing climate change is crucial for the maintenance of economic and social benefits and for the conservation of biodiversity in Europe and especially in the southeastern part of the continent, where environmental change is expected to be more intense. Beech populations in the region cover multiple ecological conditions at a small geographical range and have a complex biogeographical background involving several postglacial lineages originating from distant or local refugia. In this study, we tested the existing adaptive potential of eight beech populations from two provenances in N.E. Greece (Evros and Drama), under simulated controlled climate change conditions in a growth chamber and in the field. In the growth chamber, simulated conditions of temperature and precipitation for the year 2050 were applied for three years, under two different irrigation schemes, a non-frequent (A1) and a frequent one (A2). Seedling survival, growth and leaf phenological traits were used as adaptive traits. The results showed that beech seedlings were generally able to survive under climate change conditions and showed adaptive differences among provenances and populations. Furthermore, beech genotypes demonstrated an impressive phenotypic plasticity by changing the duration of their growing season allowing them to avoid environmental stress and high selection pressure. Different populations and provenances were connected with different adaptation strategies, that relate mainly to the temporal distribution patterns of precipitation and temperature, rather than the average annual or monthly values of these measures. Additionally, different adaptive strategies appeared among beech seedlings when the same amount of water was distributed differently within each month. This indicates that the physiological response mechanisms of beech individuals are very complex and depend on several interacting parameters. For this reason, the choice of beech provenances for translocation and use in afforestation or reforestation projects should consider the small scale ecotypic diversity of the species and view multiple environmental and climatic parameters in connection to each other.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Antonio Fidel Santos-Hernández ◽  
Alejandro Ismael Monterroso-Rivas ◽  
Diódoro Granados-Sánchez ◽  
Antonio Villanueva-Morales ◽  
Malinali Santacruz-Carrillo

The tropical rainforest is one of the lushest and most important plant communities in Mexico’s tropical regions, yet its potential distribution has not been studied in current and future climate conditions. The aim of this paper was to propose priority areas for conservation based on ecological niche and species distribution modeling of 22 species with the greatest ecological importance at the climax stage. Geographic records were correlated with bioclimatic temperature and precipitation variables using Maxent and Kuenm software for each species. The best Maxent models were chosen based on statistical significance, complexity and predictive power, and current potential distributions were obtained from these models. Future potential distributions were projected with two climate change scenarios: HADGEM2_ES and GFDL_CM3 models and RCP 8.5 W/m2 by 2075–2099. All potential distributions for each scenario were then assembled for further analysis. We found that 14 tropical rainforest species have the potential for distribution in 97.4% of the landscape currently occupied by climax vegetation (0.6% of the country). Both climate change scenarios showed a 3.5% reduction in their potential distribution and possible displacement to higher elevation regions. Areas are proposed for tropical rainforest conservation where suitable bioclimatic conditions are expected to prevail.


2021 ◽  
Vol 7 (11) ◽  
pp. 912
Author(s):  
Rodolfo Bizarria ◽  
Pepijn W. Kooij ◽  
Andre Rodrigues

Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants’ efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus–fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


Climate ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 139
Author(s):  
Manashi Paul ◽  
Sijal Dangol ◽  
Vitaly Kholodovsky ◽  
Amy R. Sapkota ◽  
Masoud Negahban-Azar ◽  
...  

Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions.


2016 ◽  
Vol 13 (22) ◽  
pp. 6229-6245 ◽  
Author(s):  
Henk-Jan van der Kolk ◽  
Monique M. P. D. Heijmans ◽  
Jacobus van Huissteden ◽  
Jeroen W. M. Pullens ◽  
Frank Berendse

Abstract. Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation simulations suggest that a wetter tundra can be responsible for local shrub decline instead of shrub expansion.


2008 ◽  
Vol 12 (2) ◽  
pp. 449-463 ◽  
Author(s):  
M. Posch ◽  
J. Aherne ◽  
M. Forsius ◽  
S. Fronzek ◽  
N. Veijalainen

Abstract. The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC) was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically) feasible reductions (MFR). Future climate (temperature and precipitation) was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2). The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change) and B2 results from HadAM3 (lowest predicted change). Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation) on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 142
Author(s):  
Quyet Manh Vu ◽  
Tri Dan Nguyen

This study aims to assess the potential development of selected agroforestry options for three provinces in the Northwest of Vietnam. Available spatial data including Land use/land cover maps and forest inventory maps were used as the base maps in combination with supplementary data and field survey to determine the potential agroforestry areas. Soil types, soil depth, soil texture, elevation, slope, temperature and rainfall were used to evaluate the biophysical suitability of ten typical agroforestry options in the study region. For assessing the impact of climate change to agroforestry suitability in the future, temperature and precipitation data extracted from two climate changes scenarios (Representative Concentration Pathway 4.5 and 8.5 in 2046–2065) were used. The results showed that the suitable areas for agroforestry development in Dien Bien, Sơn La and Yen Bai provinces were 267.74.01 ha, 405,597.96 ha; and 297,995.55 ha, respectively. Changes in temperature and precipitation by 2 climate change scenarios affected significantly to the suitability of Docynia indica + livestock grass, Teak + plum + coffee + grass and Plum + maize + livestock grass options. The map of agroforestry suitability can be served as a useful source in developing and expanding the area of agroforestry in the target provinces, and can be applied for other provinces in the same region in Vietnam.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 525
Author(s):  
Keliang Zhang ◽  
Lanping Sun ◽  
Jun Tao

Analyzing the effects of climate change on forest ecosystems and individual species is of great significance for incorporating management responses to conservation policy development. Euscaphis japonica (Staphyleaceae), a small tree or deciduous shrub, is distributed among the open forests or mountainous valleys of Vietnam, Korea, Japan, and southern China. Meanwhile, it is also used as a medicinal and ornamental plant. Nonetheless, the extents of E. japonica forest have gradually shrunk as a result of deforestation, together with the regional influence of climate change. The present study employed two methods for modeling species distribution, Maxent and Genetic Algorithm for Rule-set Prediction (GARP), to model the potential distribution of this species and the effects of climate change on it. Our results suggest that both models performed favorably, but GARP outperformed Maxent for all performance metrics. The temperate and subtropical regions of eastern China where the species had been recorded was very suitable for E. japonica growth. Temperature and precipitation were two primary environmental factors affecting the distribution of E. japonica. Under climate change scenarios, the range of suitable habitats for E. japonica will expand geographically toward the north. Our findings may be used in several ways such as identifying currently undocumented locations of E. japonica, sites where it may occur in the future, or potential locations where the species could be introduced and so contribute to the conservation and management of this species.


Sign in / Sign up

Export Citation Format

Share Document