scholarly journals Applications of High Pressure Technology in Food Processing

2021 ◽  
Vol 10 (1) ◽  
pp. 248-281
Author(s):  
K. R. Jolvis Pou

Consumer trends towards shelf-stable, safe, more natural and free from additives foods drove the need to investigate the commercial application of non-thermal food processing technologies. High pressure processing (HPP) is one such emerging technology where foods are generally subjected to high pressure (100-1000 MPa), with or without heat. Similar to heat pasteurization, HPP deactivates pathogenic microorganisms and enzymes, extends shelf life, denatures proteins, and modifies structure and texture of foods. However, unlike thermal processing, HPP can retain the quality of fresh food products, with little or no impact on nutritional value and organoleptic properties. Moreover, HPP is independent of the geometry (shape and size) of food products. The retention of food quality attributes, whilst prolonging shelf life, are enormous benefits to both food manufacturers and consumers. Researches have indicated that the combination of HPP and other treatments, based on the hurdle technology concept, has potential synergistic effects. With further advancement of the technology and its large-scale commercialization, the cost and limitations of this technology will probably reduce in the near future. The current review focuses on the mechanism and system of HPP and its applications in the processing of fruit, vegetables, meat, milk, fish and seafood, and eggs and their derived products.

Foods ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 169 ◽  
Author(s):  
Biniam Kebede ◽  
Pui Lee ◽  
Sze Leong ◽  
Vidya Kethireddy ◽  
Qianli Ma ◽  
...  

High-Pressure Processing (HPP) and Pulsed Electric Fields (PEF) processing technologies are being used increasingly on a commercial basis, with high-quality labelled fruit juices being one of the most important promotion strategies. Quality-related enzymes, which might still be active after HPP and PEF pasteurization, can cause undesirable aroma changes during storage. This study investigated volatile changes during the shelf life of PEF (15.5 kV/cm and specific energy of 158 kJ/L), HPP (600 MPa for 3 min), and thermally (72 °C for 15 s) pasteurized Jazz apple juices—up to five weeks. To have an increased insight into the volatile changes, an integrated instrumental (GC-MS) and data analysis (chemometrics) approach was implemented. Immediately after pasteurization, PEF processing resulted a better retention of odor-active volatiles, such as (E)-2-hexenal and hexyl acetate, whereas thermal processing lowered their amount. During refrigerated storage, these volatiles have gradually decreased in all processed juices. By the end of storage, the amount of these aroma relevant volatiles appears to still be higher in PEF and HPP pasteurized juices compared to their conventional counterparts. This study demonstrated the potential of advanced chemometric approaches to obtain increased insight into complex shelf life changes.


LWT ◽  
2014 ◽  
Vol 55 (2) ◽  
pp. 498-505 ◽  
Author(s):  
K. Evert-Arriagada ◽  
M.M. Hernández-Herrero ◽  
B. Guamis ◽  
A.J. Trujillo

2021 ◽  
Vol 11 (2) ◽  
pp. 686
Author(s):  
Anet Režek Jambrak ◽  
Marinela Nutrizio ◽  
Ilija Djekić ◽  
Sanda Pleslić ◽  
Farid Chemat

With the introduction of Industry 4.0, and smart factories accordingly, there are new opportunities to implement elements of industry 4.0 in nonthermal processing. Moreover, with application of Internet of things (IoT), smart control of the process, big data optimization, as well as sustainable production and monitoring, there is a new era of Internet of nonthermal food processing technologies (IoNTP). Nonthermal technologies include high power ultrasound, pulsed electric fields, high voltage electrical discharge, high pressure processing, UV-LED, pulsed light, e-beam, and advanced thermal food processing techniques include microwave processing, ohmic heating and high-pressure homogenization. The aim of this review was to bring in front necessity to evaluate possibilities of implementing smart sensors, artificial intelligence (AI), big data, additive technologies with nonthermal technologies, with the possibility to create smart factories together with strong emphasis on sustainability. This paper brings an overview on digitalization, IoT, additive technologies (3D printing), cloud data storage and smart sensors including two SWOT analysis associated with IoNTPs and sustainability. It is of high importance to perform life cycle assessment (LCA), to quantify (En)—environmental dimension; (So)—social dimension and (Ec)—economic dimension. SWOT analysis showed: potential for energy saving during food processing; optimized overall environmental performance; lower manufacturing cost; development of eco-friendly products; higher level of health and safety during food processing and better work condition for workers. Nonthermal and advanced thermal technologies can be applied also as sustainable techniques working in line with the sustainable development goals (SDGs) and Agenda 2030 issued by United Nations (UN).


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1538
Author(s):  
Gloria López-Gámez ◽  
Pedro Elez-Martínez ◽  
Olga Martín-Belloso ◽  
Robert Soliva-Fortuny

Fruits and vegetables are rich sources of bioactive compounds and micronutrients. Some of the most abundant are phenols and carotenoids, whose consumption contributes to preventing the occurrence of degenerative diseases. Recent research has shown the potential of non-thermal processing technologies, especially pulsed electric fields (PEF), ultrasounds (US), and high pressure processing (HPP), to trigger the accumulation of bioactive compounds through the induction of a plant stress response. Furthermore, these technologies together with high pressure homogenization (HPH) also cause microstructural changes in both vegetable tissues and plant-based beverages. These modifications could enhance carotenoids, phenolic compounds, vitamins and minerals extractability, and/or bioaccessibility, which is essential to exert their positive effects on health. Nevertheless, information explaining bioaccessibility changes after non-thermal technologies is limited. Therefore, further research on food processing strategies using non-thermal technologies offers prospects to develop plant-based products with enhanced bioaccessibility of their bioactive compounds and micronutrients. In this review, we attempt to provide updated information regarding the main effects of PEF, HPP, HPH, and US on health-related compounds bioaccessibility from different vegetable matrices and the causes underlying these changes. Additionally, we propose future research on the relationship between the bioaccessibility of bioactive compounds and micronutrients, matrix structure, and non-thermal processing.


2006 ◽  
Vol 69 (4) ◽  
pp. 957-968 ◽  
Author(s):  
STEPHEN F. GROVE ◽  
ALVIN LEE ◽  
TOM LEWIS ◽  
CYNTHIA M. STEWART ◽  
HAIQIANG CHEN ◽  
...  

The overall safety of a food product is an important component in the mix of considerations for processing, distribution, and sale. With constant commercial demand for superior food products to sustain consumer interest, nonthermal processing technologies have drawn considerable attention for their ability to assist development of new products with improved quality attributes for the marketplace. This review focuses primarily on the nonthermal processing technology high-pressure processing (HPP) and examines current status of its use in the control and elimination of pathogenic human viruses in food products. There is particular emphasis on noroviruses and hepatitis A virus with regard to the consumption of raw oysters, because noroviruses and hepatitis A virus are the two predominant types of viruses that cause foodborne illness. Also, application of HPP to whole-shell oysters carries multiple benefits that increase the popularity of HPP usage for these foods. Viruses have demonstrated a wide range of sensitivities in response to high hydrostatic pressure. Viral inactivation by pressure has not always been predictable based on nomenclature and morphology of the virus. Studies have been complicated in part from the inherent difficulties of working with human infectious viruses. Consequently, continued study of viral inactivation by HPP is warranted.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 288 ◽  
Author(s):  
Paulo E. S. Munekata ◽  
Rubén Domínguez ◽  
Sravanthi Budaraju ◽  
Elena Roselló-Soto ◽  
Francisco J. Barba ◽  
...  

Increase in allergenicity towards cow’s milk, lactose intolerance, the prevalence of hypercholesterolemia, and flexitarian choice of food consumption have increased the market for cow’s milk alternatives. Non-dairy plant-based beverages are useful alternatives because of the presence of bioactive components with health-promoting properties, which attract health-conscious consumers. However, the reduced nutritional value and sensory acceptability of the plant-based beverages (such as flavor, taste, and solubility) compared to cow’s milk pose a big threat to its place in the market. Thermal treatments are commonly used to ensure the quality of plant-based beverages during storage. However, the application of high temperatures can promote the degradation of thermolabile compounds and some detrimental reactions, thus reducing protein digestibility and amino acid availability of non-dairy plant-based beverages substitutes. New and advanced food processing technologies, such as high-pressure processing, high-pressure homogenization, pulsed electric fields, and ultrasound, are being researched for addressing the issues related to shelf life increase, emulsion stability, preservation of nutritional content and sensorial acceptability of the final product. However, the literature available on the application of non-thermal processing technologies on the physicochemical and nutritional properties of plant-based beverages is scarce. Concerted research efforts are required in the coming years in the functional plant-based beverages sector to prepare newer, tailor-made products which are palatable as well as nutritionally adequate.


2011 ◽  
Vol 40 (8) ◽  
pp. 1136-1140 ◽  
Author(s):  
Jing-Yu Gou ◽  
Yun-Yun Zou ◽  
Geun-Pyo Choi ◽  
Young-Beom Park ◽  
Ju-Hee Ahn

Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Monika Mieszczakowska-Frąc ◽  
Karolina Celejewska ◽  
Witold Płocharski

Nowadays, thermal treatments are used for extending the shelf-life of vegetable and fruit products by inactivating microorganisms and enzymes. On the other hand, heat treatments often induce undesirable changes in the quality of the final product, e.g., losses of nutrients, color alterations, changes in flavor, and smell. Therefore, the food industry is opening up to new technologies that are less aggressive than thermal treatment to avoid the negative effects of thermal pasteurization. Non-thermal processing technologies have been developed during the last decades as an alternative to thermal food preservation. Processing changes the structure of fruit and vegetables, and hence the bioavailability of the nutrients contained in them. In this review, special attention has been devoted to the effects of modern technologies of fruit and vegetable processing, such as minimal processing (MPFV), high-pressure processing (HPP), high-pressure homogenization (HPH), ultrasounds (US), pulsed electric fields (PEF), on the stability and bioavailability of vitamin C.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 381
Author(s):  
Gautier Cesbron-Lavau ◽  
Aurélie Goux ◽  
Fiona Atkinson ◽  
Alexandra Meynier ◽  
Sophie Vinoy

During processing of cereal-based food products, starch undergoes dramatic changes. The objective of this work was to evaluate the impact of food processing on the starch digestibility profile of cereal-based foods using advanced imaging techniques, and to determine the effect of preserving starch in its native, slowly digestible form on its in vivo metabolic fate. Four different food products using different processing technologies were evaluated: extruded products, rusks, soft-baked cakes, and rotary-molded biscuits. Imaging techniques (X-ray diffraction, micro-X-ray microtomography, and electronic microscopy) were used to investigate changes in slowly digestible starch (SDS) structure that occurred during these different food processing technologies. For in vivo evaluation, International Standards for glycemic index (GI) methodology were applied on 12 healthy subjects. Rotary molding preserved starch in its intact form and resulted in the highest SDS content (28 g/100 g) and a significantly lower glycemic and insulinemic response, while the three other technologies resulted in SDS contents below 3 g/100 g. These low SDS values were due to greater disruption of the starch structure, which translated to a shift from a crystalline structure to an amorphous one. Modulation of postprandial glycemia, through starch digestibility modulation, is a meaningful target for the prevention of metabolic diseases.


Sign in / Sign up

Export Citation Format

Share Document