scholarly journals A Statistical Analysis of Evaporative Pattern Casting Process Parameters for the Production of Aluminum Alloy Components

2020 ◽  
Vol 4 (3) ◽  
pp. 41-47
Author(s):  
B. Victor Omidiji

Four process parameters were investigated with the aim of determining their influence on the mechanical properties of some test castings, bars, cylinders and plates. The influence was quantified in terms of percentage contribution. Analysis of variance (ANOVA), regression, main effects and interaction effects plots were employed to carry out the statistical analysis. As regards the tensile strength of the test castings, the geometry of components (GOC) dominated, contributing 90.83% and the pouring temperature (PT) contributed 91.90% influence on the hardness property. These dominating potentials of these twoparameters limited the interaction of the parameters studied in the research.

2021 ◽  
Vol 63 (11) ◽  
pp. 1041-1051
Author(s):  
Shashi Prakash Dwivedi ◽  
Nagendra Kumar Maurya ◽  
Manish Maurya ◽  
Ambuj Saxena ◽  
Ashish Kumar Srivastava

Abstract The tensile strength, hardness and toughness of any materials are the most important mechanical properties in the selection of materials for varied industrial applications. In the development of aluminum based composite material, tensile strength and hardness were significantly improved by adding various ceramic reinforcement particles. However, toughness was reduced. In this research work, an attempt was made to enhance tensile strength, hardness and toughness simultaneously by using carbonized eggshell as reinforcement material developed via electromagnetic stir casting. The process parameters used in this study are the matrix pouring temperature, wt.-% of the reinforcement; preheat temperature, stirring current and stirring time. Response surface methodology (RSM) is used for conducting the experiment. The multi-objective optimization technique utility theory is employed to optimize the combined mechanical properties viz. tensile strength, hardness and toughness. Microstructure results show that at the optimum level of process parameters, eggshells are uniformly distributed. Confirmation tests are conducted to validate the experimental results. Experimental results revealed that at optimum process parameters, hardness and tensile strength are significantly improved without affecting the toughness property of the composite. The optimum level of process parameters to enhance all mechanical properties (tensile strength, hardness and toughness) were found to be a reinforced preheating temperature of about 448.32 °C, a stirring current of about 11.64 A, a stirring time of about 63.64 s, a maximum pouring temperature of about 800.24 °C and a percentage of eggshells of about 9.16 %. The novelty of this work lies in the fact that no attempt was made to optimize these electromagnetic process parameters. Corrosion loss, thermal expansion behavior and a wear test were investigated to observe the effect of adding eggshell at optimum electromagnetic stir casting parameters.


2015 ◽  
Vol 651-653 ◽  
pp. 1569-1574 ◽  
Author(s):  
Asnul Hadi Ahmad ◽  
Sumsun Naher ◽  
Dermot Brabazon

Abstracts: This paper presents an overview of measured mechanical properties of thixoformed aluminium 7075 feedstock produced by the direct thermal method (DTM). The DTM feedstock billets were processed with a pouring temperature of 685 °C and holding periods of 20 s, 40 s and 60 s before being quenched and subsequently thixoformed. A conventionally cast feedstock billet was produced with a pouring temperature of 685 °C and was allowed to solidify without quenching. The feedstock billets were later formed by an injection test unit in the semi-solid state. Tensile testing was then conducted on the thixoformed feedstock billets. Tensile properties for 7075 DTM thixoformed feedstock billets were found significantly influenced by the thixoformed component density. Samples with longer holding times were found to have higher density and higher tensile strength.


2020 ◽  
Vol 15 (3) ◽  
pp. 44-49
Author(s):  
Ibiyemi A. Idowu ◽  
Olutosin O. Ilori

The study examined the effect of fillers on the mechanical properties of the recycled low density polyethylene composites under weathered condition with a view of managing the generation and disposal of plastic wastes. Discarded pure water sachets and fillers (glass and talc) were sourced and recycled. Recycled low density polyethylene (RLDPE) and preparation of RLDPE/glass, RLDPE/talc and RLDPE/glass/talc composites were carried out using a furnace at compositions of 0 – 40% in steps of 10% by weight. The mixtures were poured into hand-laid mould. The samples produced were exposed to sunlight for eight (8) weeks and their mechanical properties were studied. The results of mechanical tests revealed that tensile strength decreased with increasing filler loading while impact strength and hardness property increased marginally and considerably with increasing filler loading for all the composites respectively. The study concluded that glass and talc were able to reinforce recycled low density polyethylene under weathered condition. Keywords: Recycled Low Density Polyethylene (RLDPE); Fillers; Glass, Talc; Weathering condition; Sunlight; and Mechanical properties; Tensile strength, Impact and hardness


2019 ◽  
Vol 1 (1) ◽  
pp. 38-48
Author(s):  
A. Sathishkumar ◽  
Gowtham A ◽  
M. Jeyasuriya ◽  
S. DineshBabu

Aluminum alloy is widely used in automotive, aerospace and other engineering industries because of its excellent mechanical properties. The main objective is to enhance 6061 Al alloy’s mechanical properties by producing 6061-B4C composite through squeeze casting process. Experimentation was carried out with different micron sizes and weight fraction of B4C particles. The mechanical properties of reinforced metal matrix were experimentally investigated in terms of Ultimate Tensile Strength and Hardness. We observe that these two properties are improved by the reinforcement of B4C particles and applied squeeze pressure.


Author(s):  
T.M. Azeez ◽  
Lateef O. Mudashiru ◽  
T.B. Asafa ◽  
A.A. Adeleke ◽  
Peter Pelumi Ikubanni

Mechanical properties of extruded aluminum are known to significantly depend on the process parameters such as temperature, numbers of extrusion pass and extrusion load among others. This implies that these properties can be influenced by tuning the process parameters. Herein, the effects of these parameters on the tensile strength and hardness of aluminum 6063 series were investigated by using equal channel angular extrusion (ECAE). Experiments were designed using Design Expert software. Analysis of variance (ANOVA) was then used to investigate the main and interactions effects of the process parameters. An empirical mathematical model was generated that shows the relationship between the input and output variables using response surface methodology. Temperature was found to be the most significant factor while extrusion load was the least factor that influenced the hardness and tensile strength which were the output factors. There was a significant increase in tensile strength and hardness after extrusion at different mix of factors. The optimum input variable was discovered at 1020.58 kN, 489.67°C and 3 numbers of extrusion passes.


Author(s):  
M. F. M. Tajudin ◽  
A. H. Ahmad ◽  
M. M. Rashidi

This paper highlights the effects of pouring temperature and holding time on the mechanical properties of aluminium 6061 semisolid feedstock billets. The semisolid metal feedstock billets were prepared by a direct thermal method (DTM), in which the molten metal was poured into a cylindrical copper mould with a different combination of pouring temperature and holding time before it was solidified in room temperature water. The results show that the sample with pouring temperature slightly above aluminium 6061 liquidus temperature has the lowest porosity, thereby the highest mechanical properties value. The sample with a pouring temperature of 660 °C and holding time of 60 s has the density, tensile strength and hardness properties of 2.701 g/cm3, 146.797 MPa, and 86.5 HV, respectively. Meanwhile, the sample at a pouring temperature of 640 °C and holding time of 20 s has density, tensile strength and hardness properties of 2.527 g/cm3, 65.39 MPa, and 71.79 HV, respectively. The density and fractography tests were conducted to confirm the existence of porosity within the samples. The results from these experimental works suggested that the mechanical properties of DTM semisolid feedstock billet merely depended on processing parameters, which influenced the porosity level within the feedstock billet, thus directly affected their mechanical properties.


Author(s):  
Peter Kayode Farayibi ◽  
Babatunde Olamide Omiyale

The acceptance and application of functional parts produced via additive manufacturing technologies is faced with challenges of poor surface finish, dimensional accuracy and mechanical properties among other which is mostly dependent on process parameters employed. In this study, the effect of infill density, layer thickness and extrusion temperature on mechanical properties of polylactic acid (PLA) part manufactured using fused deposition modelling process was investigated to obtain optimum process parameters to achieve the best properties. Solid cuboid bars were produced from which tensile, impact and hardness test specimens were obtained. A statistical approach based on Taguchi design of experiment was employed with process parameters varied and grey relational analysis coupled with principal component analysis was employed to obtain the unified optimum parameter. The single optimisation results showed that 50% infill density, 220°C extrusion temperature and 0.4 mm layer thickness resulted in best tensile strength; 30% density, 210°C temperature and 0.2 mm layer thickness is required to achieve the best impact strength, while 50% density, 215°C temperature and 0.3 mm thickness is required for highest hardness. The multi-response optimisation indicated that for the best of all the three properties to be achieved at once in a PLA built part, 50% infill density, 220°C extrusion temperature and 0.3 mm is required which yielded tensile strength of 30.02±2.15 MPa, impact strength 4.20±0.12 J and hardness of 76.80±0.38 BHN.


2019 ◽  
Vol 130 ◽  
pp. 01005
Author(s):  
Cindy Retno Putri ◽  
Anne Zulfia Syahrial ◽  
Salahuddin Yunus ◽  
Budi Wahyu Utomo

The goal of this research is to improve the mechanical properties such as strength, hardness and wear resistance for automotive application such as brake shoe and bearings due to high cycle, load and impact during their usage. Therefore, another alloying element or reinforcement addition is necessary. In this work, the composites are made by ADC 12 (Al-Si aluminum alloy) as the matrix and reinforced with micro SiC through stir casting process and TiB is added various from (0.04, 0.06, 0.15, 0.3 and 0.5) wt.% that act as grain refiners and 5 wt.% of Mg is added to improve the wettability of the composites. The addition of TiB improves the mechanical properties because the grain becomes finer and uniform, and the addition of Mg makes the matrix and reinforce have better adhesion. The results obtained that the optimum composition was found by adding 0.15 wt.% of TiB with tensile strength improve from 98 MPa to 136.3 MPa, hardness from 35 to 53 HRB and wear rate reduced from 0.006 2 mm3 s−1 to 0.002 3 mm3 s−1 respectively.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5278
Author(s):  
Yi Guo ◽  
Yongfei Wang ◽  
Shengdun Zhao

Scroll compressors are popularly applied in air-conditioning systems. The conventional fabrication process causes gas and shrinkage porosity in the scroll. In this paper, the electromagnetic stirring (EMS)-based semisolid multicavity squeeze casting (SMSC) process is proposed for effectively manufacturing wrought aluminum alloy scrolls. Insulation temperature, squeeze pressure, and the treatment of the micromorphology and mechanical properties of the scroll were investigated experimentally. It was found that reducing the insulation temperature can decrease the grain size, increase the shape factor, and improve mechanical properties. The minimum grain size was found as 111 ± 3 μm at the insulation temperature of 595 °C. The maximum tensile strength, yield strength, and hardness were observed as 386 ± 8 MPa, 228 ± 5 MPa, and 117 ± 5 HV, respectively, at the squeeze pressure of 100 MPa. The tensile strength and hardness of the scroll could be improved, and the elongation was reduced by the T6 heat treatment. The optimal process parameters are recommended at an insulation temperature in the range of 595–600 °C and a squeeze pressure of 100 MPa. Under the optimal process parameters, scroll casting was completely filled, and there was no obvious shrinkage defect observed inside. Its microstructure is composed of fine and spherical grains.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1443 ◽  
Author(s):  
Maroš Vyskoč ◽  
Miroslav Sahul ◽  
Mária Dománková ◽  
Peter Jurči ◽  
Martin Sahul ◽  
...  

In this article, the effect of process parameters on the microstructure and mechanical properties of AW5083 aluminum alloy weld joints welded by a disk laser were studied. Butt welds were produced using 5087 (AlMg4.5MnZr) filler wire, with a diameter of 1.2 mm, and were protected from the ambient atmosphere by a mixture of argon and 30 vol.% of helium (Aluline He30). The widest weld joint (4.69 mm) and the highest tensile strength (309 MPa) were observed when a 30 L/min shielding gas flow rate was used. Conversely, the narrowest weld joint (4.15 mm) and the lowest tensile strength (160 MPa) were found when no shielding gas was used. The lowest average microhardness (55.4 HV0.1) was recorded when a 30 L/min shielding gas flow rate was used. The highest average microhardness (63.9 HV0.1) was observed when no shielding gas was used. In addition to the intermetallic compounds, β-Al3Mg2 and γ-Al12Mg17, in the inter-dendritic areas of the fusion zone (FZ), Al49Mg32, which has an irregular shape, was recorded. The application of the filler wire, which contains zirconium, resulted in grain refinement in the fusion zone. The protected weld joint was characterized by a ductile fracture in the base material (BM). A brittle fracture of the unshielded weld joint was caused by the presence of Al2O3 particles. The research results show that we achieved the optimal welding parameters, because no cracks and pores were present in the shielded weld metal (WM).


Sign in / Sign up

Export Citation Format

Share Document