Use of an Instrumented Ankle Arthrometer and External Strain Gauge to Assess Ankle Dorsiflexion Motion and Plantarflexor Stiffness

2020 ◽  
Vol 110 (2) ◽  
Author(s):  
Alan R. Needle ◽  
Maurice K. McAlister ◽  
Zachary J. Felpel ◽  
Jeffrey M. McBride

Background Ankle dorsiflexion motion and plantarflexor stiffness measurement offer clinical insight into the assessment and treatment of musculoskeletal and neurologic disorders. We aimed to determine reliability and concurrent validity of an ankle arthrometer in quantifying dorsiflexion motion and plantarflexor stiffness. Methods Ten healthy individuals were assessed for dorsiflexion motion and plantarflexor stiffness using an ankle arthrometer with a 6 degree-of-freedom kinematic linkage system and external strain gauge to apply dorsiflexion torque. Two investigators each performed five loads to the ankle at different combinations of loads (10 or 20 Nm), rates (2.5 or 5 Nm/sec), and knee angles (10° or 20°). Anteroposterior displacement and inversion-eversion rotation were also assessed with arthrometry, and functional dorsiflexion motion was assessed with the weightbearing lunge (WBL) test. Results Good-to-excellent intrarater reliability was observed for peak dorsiflexion (intraclass correlation coefficient [ICC][2,k] = 0.949–0.988) and plantarflexor stiffness (ICC[2,k] = 0.761–0.984). Interrater reliability was good to excellent for peak dorsiflexion (ICC[2,1] = 0.766–0.910) and poor to excellent for plantarflexor stiffness (ICC[2,1] = 0.275–0.914). Reliability was best for 20-Nm loads at 5 Nm/sec. Strong correlations were observed between peak dorsiflexion and anteroposterior displacement (r = 0.666; P = 0.035) and WBL distance (r = -0.681; P = 0.036). Conclusions Using an ankle arthrometer to assess peak dorsiflexion and plantarflexor stiffness seems reliable when performed to greater torques with faster speeds; and offers consistency with functional measures. Use of this readily available tool may benefit clinicians attempting to quantify equinus and dorsiflexion deficits in pathological populations.

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 104
Author(s):  
Lisa Mohr ◽  
Lutz Vogt ◽  
Jan Wilke

During dynamic ultrasound assessments, unintended transducer movement over the skin needs to be prevented as it may bias the results. The present study investigated the validity of two methods quantifying transducer motion. An ultrasound transducer was moved on a pre-specified 3 cm distance over the semitendinosus muscle of eleven adults (35.8 ± 9.8 years), stopping briefly at intervals of 0.5 cm. Transducer motion was quantified (1) measuring the 2-D displacement of the shadow produced by reflective tape (RT) attached to the skin and (2) using a marker-based, three-dimensional movement analysis system (MAS). Differences between methods were detected with Wilcoxon tests; associations were checked by means of intraclass correlation coefficients (ICC 3.1) and Bland–Altman plots. Values for RT (r = 0.57, p < 0.001) and MAS (r = 0.19, p = 0.002) were significantly higher than true distances (TD). Strong correlations were found between RT and TD (ICC: 0.98, p < 0.001), MAS and TD (ICC: 0.95, p < 0.001), and MAS and RT (ICC: 0.97, p < 0.001). Bland–Altman plots showed narrow limits of agreement for both RT (−0.49 to 0.13 cm) and MAS (−0.49 to 0.34 cm) versus TD. RT and MAS are valid methods to quantify US transducer movement. In view of its low costs and complexity, RT can particularly be recommended for application in research and clinical practice.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fernando Santiago-Nuño ◽  
Patricia Palomo-López ◽  
Ricardo Becerro-de-Bengoa-Vallejo ◽  
César Calvo-Lobo ◽  
Marta Elena Losa-Iglesias ◽  
...  

Abstract The purpose was to evaluate intra and inter-rater reliability, repeatability and absolute accuracy between ultrasound imaging (US) and caliper measures to determine Spring ligament (SL) dimensions in cadavers. SLs were identified from 62 human feet from formaldehyde-embalmed cadavers. Intra and inter-observer reliability, repeatability and absolute accuracy of SL width, thickness and length between US and caliper measurements were determined at intra and inter-session by intraclass correlation coefficients, Pearson´s correlation coefficients, Student t tests, standard errors of measurement, minimum detectable changes, values of normality, 95% limits of agreement, and Bland-Altman plots. Excellent inter-session and inter-rater reliability, adequate absolute accuracy, almost perfect agreement and strong correlations were shown for caliper, US and their comparison for all SL dimensions. US measurements presented higher absolute accuracy than caliper measures for SL length and thickness dimensions, while caliper displayed greater absolute accuracy for SL width dimensions. Good repeatability (P > 0.05) was shown for all SL dimensions by US, caliper and their comparison, except for SL width dimension measured with US (P = 0.019). Both US and caliper could be recommended for all SL dimensions evaluation due to their excellent reliability and absolute accuracy in cadavers, although width dimensions should be considered with caution due to US repeatability differences.


2019 ◽  
Vol 109 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Motaz Abdalla Alawna ◽  
Bayram H. Unver ◽  
Ertugrul O. Yuksel

Background: Evaluation of range of motion (ROM) is integral to assessment of the musculoskeletal system, is required in health fitness and pathologic conditions, and is used as an objective outcome measure. Several methods are described to check ROM, each with advantages and disadvantages. Hence, this study introduces a new device using a smartphone goniometer to measure ankle joint ROM. Objective: To test the reliability of smartphone goniometry in the ankle joint by comparing it with the universal goniometer (UG) and to assess interrater and intrarater reliability for the smartphone goniometer record (SGR) application. Methods: Fifty-eight healthy volunteers (29 men and 29 women aged 18–30 years) underwent SGR and UG measurement of ankle joint dorsiflexion and plantarflexion. Two examiners measured ankle joint ROM. Descriptive statistics were calculated for descriptive and anthropometric variables, as were intraclass correlation coefficients (ICCs). Results: There were 58 usable data sets. For measuring ankle dorsiflexion ROM, both instruments showed excellent interrater reliability: UG (ICC = 0.87) and SGR (ICC = 0.89). Intrarater reliability was excellent in both instruments in ankle dorsiflexion: UG and SGR (mean ICC = 0.91). For measuring ankle plantarflexion, both instruments showed excellent interrater reliability: UG (ICC = 0.76) and SGR (ICC = 0.82). Intrarater reliability was excellent in both instruments in ankle plantarflexion: UG (mean ICC = 0.85) and SGR (mean ICC = 0.82). Conclusions: Smartphone-based goniometers can be used to assess active ROM of the ankle joint because they can achieve a high degree of intrarater and interrater reliability.


2013 ◽  
Vol 48 (2) ◽  
pp. 192-202 ◽  
Author(s):  
Alan R. Needle ◽  
Swanik Charles B. (Buz) ◽  
William B. Farquhar ◽  
Stephen J. Thomas ◽  
William C. Rose ◽  
...  

Context: Ankle sprains are common in athletes, with functional ankle instability (FAI) developing in approximately half of cases. The relationship between laxity and FAI has been inconclusive, suggesting that instability may be caused by insufficient sensorimotor function and dynamic restraint. Research has suggested that deafferentation of peripheral mechanoreceptors potentially causes FAI; however, direct evidence confirming peripheral sensory deficits has been elusive because previous investigators relied upon subjective proprioceptive tests. Objective: To develop a method for simultaneously recording peripheral sensory traffic, joint forces, and laxity and to quantify differences between healthy ankles and those with reported instability. Design: Case-control study. Setting: University laboratory. Patients or Other Participants: A total of 29 participants (age = 20.9 ± 2.2 years, height = 173.1 ± 8.9 cm, mass = 74.5 ± 12.7 kg) stratified as having healthy (HA, n = 19) or unstable ankles (UA, n = 10). Intervention(s): Sensory traffic from muscle spindle afferents in the peroneal nerve was recorded with microneurography while anterior (AP) and inversion (IE) stress was applied to ligamentous structures using an ankle arthrometer under test and sham conditions. Main Outcome Measure(s): Laxity (millimeters or degrees) and amplitude of sensory traffic (percentage) were determined at 0, 30, 60, 90, and 125 N of AP force and at 0, 1, 2, 3, and 4 Nm of IE torque. Two-factor repeated-measures analyses of variance were used to determine differences between groups and conditions. Results: No differences in laxity were observed between groups (P &gt; .05). Afferent traffic increased with increased force and torque in test trials (P &lt; .001). The UA group displayed decreased afferent activity at 30 N of AP force compared with the HA group (HA: 30.2% ± 9.9%, UA: 17.1% ± 16.1%, P &lt; .05). Conclusions: The amplitude of sensory traffic increased simultaneously with greater ankle motion and loading, providing evidence of the integrated role of capsuloligamentous and musculotendinous mechanoreceptors in maintaining joint sensation. Unstable ankles demonstrated diminished afferent traffic at low levels of force, suggesting the early detection of joint loading may be compromised.


2003 ◽  
Vol 12 (3) ◽  
pp. 208-220 ◽  
Author(s):  
Tricia J. Hubbard ◽  
John E. Kovaleski ◽  
Thomas W. Kaminski

Context:Measurement reliability is critical when new sports-medicine devices or techniques are developed.Objective:To determine the reliability of laxity measurements obtained from an instrumented ankle arthrometer.Design:Intratester reliability was examined using a test–retest design, and intertester reliability was assessed using the measurements recorded by 2 different examiners on a separate group of participants.Setting:Sports-medicine research laboratory.Participants:40 participants with no history of ankle injury, equally divided across the 2 studies.Measurements:Laxity measurements included anteroposterior (AP) displacement during loading to 125 N. Inversion–eversion (I–E) rotation was tested during loading to 4000 N-mm. The measures were analyzed using intraclass correlation coefficients (ICCs) and dependentttests.Results:Good to excellent ICCs (.80–.99) for intratester and intertester reliability. A significant difference in measures was observed between testers for both AP displacement and I–E rotation.Conclusions:Laxity measurements from an instrumented ankle arthrometer are reliable across test days and examiners


2020 ◽  
Vol 15 (4) ◽  
pp. 581-584 ◽  
Author(s):  
Antonio Dello Iacono ◽  
Stephanie Valentin ◽  
Mark Sanderson ◽  
Israel Halperin

Purpose: To investigate the test–retest reliability and criterion validity of the isometric horizontal push test (IHPT), a newly designed test that selectively measures the horizontal component of maximal isometric force. Methods: Twenty-four active males with ≥3 years of resistance training experience performed 2 testing sessions of the IHPT, separated by 3 to 4 days of rest. In each session, subjects performed 3 maximal trials of the IHPT with 3 minutes of rest between them. The peak force outputs were collected simultaneously using a strain gauge and the criterion equipment consisting of a floor-embedded force plate. Results: The test–retest reliability of peak force values was nearly perfect (intraclass correlation coefficient = ∼.99). Bland–Altman analysis showed excellent agreement between days with nearly no bias for strain gauge 1.2 N (95% confidence interval [CI], −3 to 6 N) and force plate 0.8 N (95% CI, −4 to 6 N). A nearly perfect correlation was observed between the strain gauge and force plate (r = .98, P < .001), with a small bias of 8 N (95% CI, 1.2 to 15 N) in favor of the force plate. The sensitivity of the IHPT was also good, with smallest worthwhile change greater than standard error of measurement for both the strain gauge (smallest worthwhile change: 29 N; standard error of measurement: 17 N; 95% CI, 14 to 20 N) and the force plate (smallest worthwhile change: 29 N; standard error of measurement: 18 N; 95% CI, 14 to 19 N) devices. Conclusions: The high degree of validity, reliability, and sensitivity of the IHPT, coupled with its affordability, portability, ease of use, and time efficacy, point to the potential of the test for assessment and monitoring purposes.


2021 ◽  
Vol 25 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Dong-Gi Lee ◽  
Jonathan Gerber ◽  
Vinaya Bhatia ◽  
Nicolette Janzen ◽  
Paul F. Austin ◽  
...  

Purpose: The aim of this study was to assess the performance of a mobile acoustic Uroflowmetry (UFM) application compared with standard UFM in the pediatric population.Methods: A mobile acoustic UFM application represents a noninvasive method to estimate the urine flow rate by recording voiding sounds with a smartphone. Male pediatric patients who were undergoing UFM testing were prospectively recruited, and the voiding sounds were recorded and analyzed. The intraclass correlation coefficient (ICC) was used to compare the maximum flow rate (Qmax), average flow rate (Qavg), voiding time (VT), and voiding volume (VV) as estimated by acoustic UFM with those calculated by standard UFM. Differences in Qmax, Qavg, VT, and VV between the 2 UFM tests were determined using 95% Bland-Altman limits of agreement.Results: A total of 16 male patients were evaluated. Their median age was 9 years. With standard UFM, the median Qmax, Qavg, VT, and VV were 18.7 mL/sec, 11.1 mL/sec, 15.2 seconds, and 157.8 mL, respectively. Strong correlations were observed between the 2 methods for Qmax (ICC=0.755, P=0.005), VT (ICC=0.974, P<0.001), and VV (ICC=0.930, P<0.001), but not for Qavg (ICC=0.442, P=0.135). The Bland-Altman plot showed good agreement between the 2 UFM tests. Flow patterns recorded by acoustic UFM and conventional UFM showed good visual correlations.Conclusions: Acoustic UFM was comparable to standard UFM for male pediatric patients. Further validation of its performance in different toilet settings is necessary for broader use.


2018 ◽  
Author(s):  
Nour Shaballout ◽  
Anas Aloumar ◽  
Till-Ansgar Neubert ◽  
Martin Dusch ◽  
Florian Beissner

BACKGROUND Pain drawings (PDs) are an important tool to evaluate, communicate, and objectify pain. In the past few years, there has been a shift toward tablet-based acquisition of PDs, and several studies have been conducted to test the usefulness, reliability, and repeatability of electronic PDs. However, to our knowledge, no study has investigated the potential role of electronic PDs in the clinical assessment and treatment of inpatients in acute pain situations. OBJECTIVE The aim of this study was to evaluate whether knowledge of the patients’ electronic PD has the potential to improve the doctors’ understanding of their patients and to influence their clinical decision making. Furthermore, we sought to identify differences between electronic PDs of patients and their treating pain specialists in an acute pain situation and to find those specific characteristics derived from the PDs that had the largest impact on doctors’ understanding. METHODS We obtained electronic PDs from 47 inpatients in acute pain situations before their consultation with a pain specialist on a tablet personal computer with a stylus. Before looking at their patients’ drawings, these specialists drew their own conception of the patients’ pain after anamnesis and physical examination. Patients’ drawings were then revealed to the doctors, and they were asked to evaluate how much the additional information improved their understanding of the case and how much it influenced their clinical decision on an 11-point Likert scale (0=“not at all” and 10=“very much”). Similarities and differences of patients’ and doctors’ PDs were assessed by visual inspection and by calculating Jaccard index and intraclass correlation coefficient (ICC) of the pain area and the number of pain clusters. Exploratory analyses were conducted by means of correlation tables to identify specific factors that influenced doctors’ understanding. RESULTS Patients’ PDs significantly improved the doctors’ understanding (mean score 4.81, SD 2.60, P<.001) and to a lesser extent their clinical decision (mean 2.68, SD 1.18, P<.001). Electronic PDs of patients and doctors showed fair to good similarity for pain extent (r=.454, P=.001) and widespreadness (P=.447, r=.002) were important factors helping doctors to understand their patients. CONCLUSIONS In a clinical setting, electronic PDs can improve doctors’ understanding of patients in acute pain situations. The ability of electronic PDs to visualize differences between doctors’ and patients’ conception of pain has the potential to improve doctor-patient communication.


2013 ◽  
Vol 22 (3) ◽  
pp. 212-215 ◽  
Author(s):  
Gediminas Tankevicius ◽  
Donata Lankaite ◽  
Aleksandras Krisciunas

Context:The lack of knowledge about isometric ankle testing indicates the need for research in this area.Objective:to assess test–retest reliability and to determine the optimal position for isometric ankle-eversion and -inversion testing.Design:Test–retest reliability study. Isometric ankle eversion and inversion were assessed in 3 different dynamometer foot-plate positions: 0°, 7°, and 14° of inversion. Two maximal repetitions were performed at each angle. Both limbs were tested (40 ankles in total). The test was performed 2 times with a period of 7 d between the tests.Setting:University hospital.Participants:The study was carried out on 20 healthy athletes with no history of ankle sprains.Main Outcome Measures:Reliability was assessed using intraclass correlation coefficient (ICC2,1); minimal detectable change (MDC) was calculated using a 95% confidence interval. Paired t test was used to measure statistically significant changes, and P <.05 was considered statistically significant.Results:Eversion and inversion peak torques showed high ICCs in all 3 angles (ICC values .87–.96, MDC values 3.09–6.81 Nm). Eversion peak torque was the smallest when testing at the 0° angle and gradually increased, reaching maximum values at 14° angle. The increase of eversion peak torque was statistically significant at 7 ° and 14° of inversion. Inversion peak torque showed an opposite pattern—it was the smallest when measured at the 14° angle and increased at the other 2 angles; statistically significant changes were seen only between measures taken at 0° and 14°.Conclusions:Isometric eversion and inversion testing using the Biodex 4 Pro system is a reliable method. The authors suggest that the angle of 7° of inversion is the best for isometric eversion and inversion testing.


Author(s):  
Javier García-Rubio ◽  
José Pino ◽  
Pedro R. Olivares ◽  
Sergio J. Ibáñez

Range of motion measurement is fundamental in the physical examination and functional evaluation of different joints. WIMUTM is an inertial device that allows the analysis of joint motion easily in real time. This study had a two-fold goal: (i) to evaluate the validity of WIMUTM on the measurement of different angle positions, compared with a standard goniometer and 2D video-based motion analysis software; and (ii) to evaluate the use of WIMUTM in the assessment of angulations in a joint, specifically assessing the validity and reliability of WIMUTM on the measurement of ankle dorsiflexion, compared to a standard goniometer and Kinovea. The intraclass correlation coefficient and Pearson´s correlation coefficient (r) were performed to calculate the concurrent validity, and Bland-Altman plots were performed to analyze agreement between measures. For the analysis of reliability, both relative and absolute indices were used. The results showed excellent validity and reliability of WIMUTM in the assessment of angle positions and ankle dorsiflexion. The current findings conclude that WIMUTM is a valid and reliable instrument to measure angle and joint motions. In short, WIMUTM provides a new clinical and sportive method of angle measurement.


Sign in / Sign up

Export Citation Format

Share Document