Consuming the Earth

Author(s):  
Peter Dauvergne

The ecological footprint of humanity, as this chapter documents, is now over 1.5 times higher than the earth’s capacity to regenerate renewable resources and assimilate waste. This crisis is worsening as the biological integrity of ecosystems continues to decline and as the global ecological footprint continues to rise (with per capita footprints rising in most countries). This chapter documents some of the accompanying ecological costs of rising rates of unsustainable consumption for forests, oceans, freshwater, soils, species, and the global climate. More than half of the world’s tropical forests have been cleared since 1950, with loggers, ranchers, and plantation owners continuing to clear millions of hectares a year. The global climate is warming, glaciers are melting, and ocean currents are shifting. And each day another 10 to 500 species (of the earth’s 8–9 million species) are going extinct.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yung-Jaan Lee ◽  
Lei Chai ◽  
Po-Shu Wu

AbstractThis study examines Taiwan’s ecological footprint (EF) and its Overshoot Day from 2000 to 2018. The latest EF calculation method is used to determine the conversion rates and equivalent factors of bioproductive lands in each year to establish a database of Taiwan’s EF in that period. The results reveal that Taiwan’s EF was 7.69 gha/person in 2000, dropping steadily to 6.46 gha/person in 2018. Taiwan’s carbon footprint accounted for about 61% of Taiwan’s total EF, slightly higher than the world average (60%). The carbon footprint as a proportion of the total EF has been increasing annually. This study adopts social communication tools, such as the overshoot day and the earth clock, to promote sustainable development goals and climate change policy initiatives. Global Footprint Network (GFN) updates the overshoot day of each country in its database yearly, based on each country’s EF and biocapacity. Since Taiwan is not included in GFN, this study adopts the same method and finds out that Taiwan's Overshoot Day in 2018 was March 14th, meaning that on March 14th, 2018, Taiwan exhausted all of the biological resources that its bioproductive lands can regenerate in the year. If the global population lived like Taiwanese, four Earths would be required to provide the resources used. This result not only reflects the consumption of natural resources in Taiwan, but also indicates that Taiwan should focus on sustainable development and reduce that consumption.


2014 ◽  
Vol 472 ◽  
pp. 899-903 ◽  
Author(s):  
Biao Gao ◽  
Qing Tao Xu

The paper calculates ecological footprint per capita and ecological capacity per capita in the Jilin province during 1998 and 2010 by using the ecological footprint theory, and analyzes the dynamic changes of ecological footprint per capita and ecological capacity per capita, and obtains development prediction model of ecological footprint per capita and ecological capacity per capita based on grey prediction model. The results indicate the ecological footprint per capita had increased continuously from 1.7841 hm2 per capita to 3.2013 hm2 per capita between 1998 and 2010. During this period, ecological capacity per capita dropped from 1.3535 hm2 per capita to 1.3028 hm2 per capita. Ecological deficit had increased from 0.4306 hm2 per capita to 1.8985 hm2 per capita that showed that the development of Jilin province was in an unsustainable status. The gray prediction model shows the ecological footprint per capita in the Jilin province will increase from 3.4833 hm2 per capita to 5.7022 hm2 per capita between 2011 and 2020, ecological capacity per capita will drop from 1.2978 hm2 per capita to 1.2676 hm2 per capita and ecological deficit will increase from 2.1855 hm2 per capita to 4.4346 hm2 per capita.


1994 ◽  
Vol 37 (5 Sup.) ◽  
Author(s):  
G. P. Gregori

A model is investigated, by which the encounters of the solar system with dense interstellar clouds ought to trigger either geomagnetic field reversals or excursions, that produce extra electric currents within the Earth dynamo, that cause extra Joule's heating, that supplies volcanoes and endogenous processes. Volcanoes increase the Earth degassing into the atmosphere, hence the concentration of the minor atmospheric constituents, including the greenhouse gases, hence they affect climate temperature, glacier melting, sea level and global change. This investigation implies both theoretical studies and observational data handling on different time scales, including present day phenomena, instrumental data series, historical records, proxy data, and geological and palaeontological evidences. The state of the art is briefly outlined, mentioning some already completed achievements, investigations in progress, and future perspectives.


2020 ◽  
Author(s):  
Suleyman Yurtkuran

Abstract This study aims to investigate the dynamic relationship between income, clean energy consumption, exports, imports, urbanization and ecological footprint for Turkey from 1973 to 2015 using the environmental Kuznets curve hypothesis. The long-term coefficients derived from the ARDL approach demonstrate that import increase the ecological footprint, whereas urbanization and clean energy consumption do not have an impact on environmental pollution in the long-term. In addition, the 2001 dummy variable is negative and statistically significant. The crisis in 2001 slowed down the economic growth rate. This situation also caused reduction of environmental pollution. Moreover, the long run estimates indicate that the EKC hypothesis is valid in Turkey. However, the turning point of per capita income was calculated as $16,045 that outside of the analyzed period. As economic activities increase, human pressure on nature continues to increase. Consequently, the only factor that reduces the ecological footprint has been determined as exports. In contrast, economic growth and clean energy consumption cannot be used as a tool to reduce the ecological footprint. Turkey needs a higher level of per capita income than the threshold level to improve environmental quality.


2021 ◽  
Author(s):  
Paul L. Leshota ◽  
Ericka S. Dunbar ◽  
Musa W. Dube ◽  
Malebogo Kgalemang

Climate change and its global impact on all people, especially the marginalized communities, is widely recognized as the biggest crisis of our time. It is a context that invites all subjects and disciplines to bring their resources in diagnosing the problem and seeking the healing of the Earth. The African continent, especially its women, constitute the subalterns of global climate crisis. Can they speak? If they speak, can they be heard? Both the Earth and the Africa have been identified with the adjective “Mother.” This gender identity tells tales in patriarchal and imperial worlds that use the female gender to signal legitimation of oppression and exploitation. In this volume, African women theologians and their female-identifying colleagues, struggle with reading and interpreting religious texts in the context of environmental crisis that are threatening life on Earth. The chapters interrogate how biblical texts and African cultural resources imagine the Earth and our relationship with the Earth: Do these texts offer readers windows of hope for re-imagining liberating relationship with the Earth? How do they intersect with gender, race, empire, ethnicity, sexuality among others? Beginning with Genesis, journeying through Exodus, Ruth, Ecclesiastes and the Gospel of John, the authors seek to read in solidarity with the Earth, for the healing of the whole Earth community.


2008 ◽  
Vol 8 (2) ◽  
pp. 7373-7389 ◽  
Author(s):  
A. Stohl

Abstract. Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.


2021 ◽  
Author(s):  
Karina von Schuckmann

<p>Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This simple number, the Earth energy imbalance (EEI), is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control. Combining multiple measurements and approaches in an optimal way holds considerable promise for estimating EEI and continued quantification and reduced uncertainties can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, advance on instrumental limitations, and the establishment of an international framework for concerted multidisciplinary research effort. This talk will provide an overview on the different approaches and their challenges for estimating the EEI. A particular emphasis will be drawn on the heat gain of the Earth system over the past half of a century – and particularly how much and where the heat is distributed – which is fundamental to understanding how this affects warming ocean, atmosphere and land; rising surface temperature; sea level; and loss of grounded and floating ice, which are critical concerns for society.</p><p> </p>


Author(s):  
Paulo Artaxo

Tropical forests, with their high biological activity, have the potential to emit large amounts of trace gases and aerosol particles to the atmosphere. The accelerated development and land clearing that is occurring in large areas of the Amazon basin suggest that anthropogenic effects on natural biogeochemical cycles are already occurring (Gash et al. 1996). The atmosphere plays a key role in this process. The tropics are the part of the globe with the most rapidly growing population, the most dramatic industrial expansion and the most rapid and pervasive change in land use and land cover. Also the tropics contain the largest standing stocks of terrestrial vegetation and have the highest rates of photosynthesis and respiration. It is likely that changes in tropical land use will have a profound impact on the global atmosphere (Andreae 1998, Andreae and Crutzen 1997). A significant fraction of nutrients are transported or dislocated through the atmosphere in the form of trace gases, aerosol particles, and rainwater (Keller et al. 1991). Also the global effects of carbon dioxide, methane, nitrous oxide, and other trace gases have in the forest ecosystems a key partner. The large emissions of isoprene, terpenes, and many other volatile organic compounds could impact carbon cycling and the production of secondary aerosol particles over the Amazon region. Vegetation is a natural source of many types of aerosol particles that play an important role in the radiation budget over large areas (Artaxo et al. 1998). There are 5 major reservoirs in the Earth system: atmosphere, biosphere (vegetation, animals), soils, hydrosphere (oceans, lakes, rivers, groundwater), and the lithosphere (Earth crust). Elemental cycles of carbon, oxygen, nitrogen, sulfur, phosphorus, and other elements interact with the different reservoirs of the Earth system. The carbon cycle has important aspects in tropical forests due to the large amount of carbon stored in the tropical forests and the high rate of tropical deforestation (Jacob 1999). In Amazonia there are two very different atmospheric conditions: the wet season (mostly from November to June) and the dry season (July-October) (see Marengo and Nobre, this volume). Biomass burning emissions dominate completely the atmospheric concentrations over large areas of the Amazon basin during the dry season (Artaxo et al. 1988).


Author(s):  
John J. W. Rogers ◽  
M. Santosh

Continents affect the earth’s climate because they modify global wind patterns, control the paths of ocean currents, and absorb less heat than seawater. Throughout earth history the constant movement of continents and the episodic assembly of supercontinents has influenced both global climate and the climates of individual continents. In this chapter we discuss both present climate and the history of climate as far back in the geologic record as we can draw inferences. We concentrate on longterm changes that are affected by continental movements and omit discussion of processes with periodicities less than about 20,000 years. We refer readers to Clark et al. (1999) and Cronin (1999) if they are interested in such short-term processes as El Nino, periodic variations in solar irradiance, and Heinrich events. The chapter is divided into three sections. The first section describes the processes that control climate on the earth and includes a discussion of possible causes of glaciation that occurred over much of the earth at more than one time in the past. The second section investigates the types of evidence that geologists use to infer past climates. They include specific rock types that can form only under restricted climatic conditions, varieties of individual fossils, diversity of fossil populations, and information that the 18O/16O isotopic system can provide about temperatures of formation of ancient sediments. The third section recounts the history of the earth’s climate and relates changes to the growth and movement of continents. This history takes us from the Archean, when climates are virtually unknown, through various stages in the evolution of organic life, and ultimately to the causes of the present glaciation in both the north and the south polar regions. The earth’s climate is controlled both by processes that would operate even if continents did not exist and also by the positions and topographies of continents. We begin with the general controls, then discuss the specific effects of continents, and close with a brief discussion of processes that cause glaciation. The general climate of the earth is determined by the variation in the amount of sunshine received at different latitudes, by the earth’s rotation, and by the amount of arriving solar energy that is retained in the atmosphere.


Author(s):  
Colin Neal

Freshwater environments are of major importance to health issues in both direct (e.g., drinking water and sanitation) and indirect (e.g., industry, agriculture, and amenity/recreation) ways. However, water resources are finite, and, though renewable, demands have multiplied over the last 100 years due to escalating human populations and the growing requirements of industry and agriculture. Hence, there are increasing global concerns over the extent of present and future good quality water resources. As Gleick (1998) emphasizes: . . . ·Per-capita water demands are increasing, but percapita water availability is decreasing due to population growth and economic development. . . . . . . ·Half the world’s population lacks basic sanitation and more than a billion people lack potable drinking water; these numbers are rising. Incidences of some water-related diseases are rising. . . . . . . ·The per-capita amount of irrigated land is falling and competition for agricultural water is growing. . . . . . . ·Political and military tensions/conflicts over shared water resources are growing. . . . . . . ·A groundwater overdraft exists, the size of which is accelerating; groundwater supplies occur on every continent except Antarctica. . . . . . . ·Global climate change is evident, and the hydrological cycle will be seriously affected in ways that are only beginning to be understood. . . . The chemical composition of surface and groundwaters is influenced by a wide range of processes, some of which are outside the influence of humans while others are a direct consequence of anthropogenic pollution or changing of the environment. Starting with the range and nature of the processes involved, the changing nature of surface and groundwater quality is illustrated here, based on the evolution of the United Kingdom from a rural to an industrial and to a post- industrial society. The issue of what constitutes a health risk is outlined in relation to the pragmatic approaches required for environmental management. Surface and groundwater exhibit a wide range of chemical compositions, and, in ecosystems uninfluenced by humans, the range of compositions can vary considerably.


Sign in / Sign up

Export Citation Format

Share Document