scholarly journals In situ structural analysis of the Yersinia enterocolitica injectisome

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Mikhail Kudryashev ◽  
Marco Stenta ◽  
Stefan Schmelz ◽  
Marlise Amstutz ◽  
Ulrich Wiesand ◽  
...  

Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to inject effector proteins into eukaryotic host cells, a process called type III secretion. Here we present the first three-dimensional structure of Yersinia enterocolitica and Shigella flexneri injectisomes in situ and the first structural analysis of the Yersinia injectisome. Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length variations of 20%. The in situ structures of the Y. enterocolitica and S. flexneri injectisomes had similar dimensions and were significantly longer than the isolated structures of related injectisomes. The crystal structure of the inner membrane injectisome component YscD appeared elongated compared to a homologous protein, and molecular dynamics simulations documented its elongation elasticity. The ring-shaped secretin YscC at the outer membrane was stretched by 30–40% in situ, compared to its isolated liposome-embedded conformation. We suggest that elasticity is critical for some two-membrane spanning protein complexes to cope with variations in the intermembrane distance.

2008 ◽  
Vol 191 (2) ◽  
pp. 563-570 ◽  
Author(s):  
Andreas K. J. Veenendaal ◽  
Charlotta Sundin ◽  
Ariel J. Blocker

ABSTRACT Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.


2019 ◽  
Author(s):  
Karine de Guillen ◽  
Cécile Lorrain ◽  
Pascale Tsan ◽  
Philippe Barthe ◽  
Benjamin Petre ◽  
...  

ABSTRACTRust fungi are plant pathogens that secrete an arsenal of effector proteins interfering with plant functions and promoting parasitic infection. Effectors are often species-specific, evolve rapidly, and display low sequence similarities with known proteins or domains. How rust fungal effectors function in host cells remains elusive, and biochemical and structural approaches have been scarcely used to tackle this question. In this study, we used a strategy based on recombinant protein production in Escherichia coli to study eleven candidate effectors of the leaf rust fungus Melampsora larici-populina. We successfully purified and solved the three-dimensional structure of two proteins, MLP124266 and MLP124017, using NMR spectroscopy. Although both proteins show no sequence similarity with known proteins, they exhibit structural similarities to knottin and nuclear transport factor 2-like proteins, respectively. Altogether, our findings show that sequence-unrelated effectors can adopt folds similar to known proteins, and encourage the use of biochemical and structural approaches to functionally characterize rust effector candidates.


2006 ◽  
Vol 188 (20) ◽  
pp. 7072-7081 ◽  
Author(s):  
Stefan Fälker ◽  
M. Alexander Schmidt ◽  
Gerhard Heusipp

ABSTRACT DNA methylation by the DNA adenine methyltransferase (Dam) interferes with the coordinated expression of virulence functions in an increasing number of pathogens. While analyzing the effect of Dam on the virulence of the human pathogen Yersinia enterocolitica, we observed type III secretion of Yop effector proteins under nonpermissive conditions. Dam alters the Ca2+ regulation of Yop secretion but does not affect the temperature regulation of Yop/Ysc expression. The phenotype is different from that of classical “Ca2+-blind” mutants of Yersinia, as Dam-overproducing (DamOP) strains still translocate Yops polarly into eukaryotic cells. Although transcription of the lcrGV and yopN-tyeA operons is slightly upregulated, LcrG is absent from lysates of DamOP bacteria, while the amounts of YopN and TyeA are not changed. We present evidence that clpXP expression increases after Dam overproduction and that the ClpP protease then degrades LcrG, thereby releasing a block in type III secretion. This is the first example of posttranslational regulation of type III secretion by the Clp protease and adds a new flavor to the complex regulatory mechanisms underlying the controlled release of effector proteins from bacterial cells.


2012 ◽  
Vol 56 (11) ◽  
pp. 5433-5441 ◽  
Author(s):  
Miles C. Duncan ◽  
Roger G. Linington ◽  
Victoria Auerbuch

ABSTRACTThe recent and dramatic rise of antibiotic resistance among bacterial pathogens underlies the fear that standard treatments for infectious disease will soon be largely ineffective. Resistance has evolved against nearly every clinically used antibiotic, and in the near future, we may be hard-pressed to treat bacterial infections previously conquered by “magic bullet” drugs. While traditional antibiotics kill or slow bacterial growth, an important emerging strategy to combat pathogens seeks to block the ability of bacteria to harm the host by inhibiting bacterial virulence factors. One such virulence factor, the type three secretion system (T3SS), is found in over two dozen Gram-negative pathogens and functions by injecting effector proteins directly into the cytosol of host cells. Without T3SSs, many pathogenic bacteria are unable to cause disease, making the T3SS an attractive target for novel antimicrobial drugs. Interdisciplinary efforts between chemists and microbiologists have yielded several T3SS inhibitors, including the relatively well-studied salicylidene acylhydrazides. This review highlights the discovery and characterization of T3SS inhibitors in the primary literature over the past 10 years and discusses the future of these drugs as both research tools and a new class of therapeutic agents.


2013 ◽  
Vol 81 (11) ◽  
pp. 4220-4231 ◽  
Author(s):  
Veerendra Koppolu ◽  
Ichie Osaka ◽  
Jeff M. Skredenske ◽  
Bria Kettle ◽  
P. Scott Hefty ◽  
...  

ABSTRACTVirF is an AraC family transcriptional activator that is required for the expression of virulence genes associated with invasion and cell-to-cell spread byShigella flexneri, including multiple components of the type three secretion system (T3SS) machinery and effectors. We tested a small-molecule compound, SE-1 (formerly designated OSSL_051168), which we had identified as an effective inhibitor of the AraC family proteins RhaS and RhaR, for its ability to inhibit VirF. Cell-based reporter gene assays withEscherichia coliandShigella, as well asin vitroDNA binding assays with purified VirF, demonstrated that SE-1 inhibited DNA binding and transcription activation (likely by blocking DNA binding) by VirF. Analysis of mRNA levels using real-time quantitative reverse transcription-PCR (qRT-PCR) further demonstrated that SE-1 reduced the expression of the VirF-dependent virulence genesicsA,virB,icsB, andipaBinShigella. We also performed eukaryotic cell invasion assays and found that SE-1 reduced invasion byShigella. The effect of SE-1 on invasion required preincubation ofShigellawith SE-1, in agreement with the hypothesis that SE-1 inhibited the expression of VirF-activated genes required for the formation of the T3SS apparatus and invasion. We found that the same concentrations of SE-1 had no detectable effects on the growth or metabolism of the bacterial cells or the eukaryotic host cells, respectively, indicating that the inhibition of invasion was not due to general toxicity. Overall, SE-1 appears to inhibit transcription activation by VirF, exhibits selectivity toward AraC family proteins, and has the potential to be developed into a novel antibacterial agent.


2005 ◽  
Author(s):  
David L. Coplin ◽  
Shulamit Manulis ◽  
Isaac Barash

Gram-negative plant pathogenic bacteria employ specialized type-III secretion systems (TTSS) to deliver an arsenal of pathogenicity proteins directly into host cells. These secretion systems are encoded by hrp genes (for hypersensitive response and pathogenicity) and the effector proteins by so-called dsp or avr genes. The functions of effectors are to enable bacterial multiplication by damaging host cells and/or by blocking host defenses. We characterized essential hrp gene clusters in the Stewart's Wilt of maize pathogen, Pantoea stewartii subsp. stewartii (Pnss; formerly Erwinia stewartii) and the gall-forming bacterium, Pantoea agglomerans (formerly Erwinia herbicola) pvs. gypsophilae (Pag) and betae (Pab). We proposed that the virulence and host specificity of these pathogens is a function of a) the perception of specific host signals resulting in bacterial hrp gene expression and b) the action of specialized signal proteins (i.e. Hrp effectors) delivered into the plant cell. The specific objectives of the proposal were: 1) How is the expression of the hrp and effector genes regulated in response to host cell contact and the apoplastic environment? 2) What additional effector proteins are involved in pathogenicity? 3) Do the presently known Pantoea effector proteins enter host cells? 4) What host proteins interact with these effectors? We characterized the components of the hrp regulatory cascade (HrpXY ->7 HrpS ->7 HrpL ->7 hrp promoters), showed that they are conserved in both Pnss and Fag, and discovered that the regulation of the hrpS promoter (hrpSp) may be a key point in integrating apoplastic signals. We also analyzed the promoters recognized by HrpL and demonstrated the relationship between their composition and efficiency. Moreover, we showed that promoter strength can influence disease expression. In Pnss, we found that the HrpXY two-component signal system may sense the metabolic status of the bacterium and is required for full hrp gene expression in planta. In both species, acyl-homoserine lactone-mediated quorum sensing may also regulate epiphytic fitness and/or pathogenicity. A common Hrp effector protein, DspE/WtsE, is conserved and required for virulence of both species. When introduced into corn cells, Pnss WtsE protein caused water-soaked lesions. In other plants, it either caused cell death or acted as an Avr determinant. Using a yeast- two-hybrid system, WtsE was shown to interact with a number of maize signal transduction proteins that are likely to have roles in either programmed cell death or disease resistance. In Pag and Pab, we have characterized the effector proteins HsvG, HsvB and PthG. HsvG and HsvB are homologous proteins that determine host specificity of Pag and Pab on gypsophila and beet, respectively. Both possess a transcriptional activation domain that functions in yeast. PthG was found to act as an Avr determinant on multiple beet species, but was required for virulence on gypsophila. In addition, we demonstrated that PthG acts within the host cell. Additional effector genes have been characterized on the pathogenicity plasmid, pPATHₚₐg, in Pag. A screen for HrpL- regulated genes in Pnsspointed up 18 candidate effector proteins and four of these were required for full virulence. It is now well established that the virulence of Gram-negative plant pathogenic bacteria is governed by Hrp-dependent effector proteins. However; the mode of action of many effectors is still unresolved. This BARD supported research will significantly contribute to the understanding of how Hrp effectors operate in Pantoea spp. and how they control host specificity and affect symptom production. This may lead to novel approaches for genetically engineering plants resistant to a wide range of bacterial pathogens by inactivating the Hrp effectors with "plantabodies" or modifying their receptors, thereby blocking the induction of the susceptible response. Alternatively, innovative technologies could be used to interfere with the Hrp regulatory cascade by blocking a critical step or mimicking plant or quorum sensing signals.   


1998 ◽  
Vol 66 (6) ◽  
pp. 2976-2979 ◽  
Author(s):  
Mahfuzur R. Sarker ◽  
Marie-Paule Sory ◽  
Aoife P. Boyd ◽  
Maite Iriarte ◽  
Guy R. Cornelis

ABSTRACT Extracellular Yersinia disables the immune system of its host by injecting effector Yop proteins into host cells. We show that a Yersinia enterocolitica nonpolar lcrGmutant is severely impaired in the translocation of YopE, YopH, YopM, YpkA/YopO, and YopP into eukaryotic cells. LcrG is thus required for efficient internalization of all the known Yop effectors.


Author(s):  
Nicole Ludwig ◽  
Stefanie Reissmann ◽  
Kerstin Schipper ◽  
Carla Gonzalez ◽  
Daniela Assmann ◽  
...  

AbstractPlant pathogenic fungi colonizing living plant tissue secrete a cocktail of effector proteins to suppress plant immunity and reprogramme host cells. Although many of these effectors function inside host cells, delivery systems used by pathogenic bacteria to translocate effectors into host cells have not been detected in fungi. Here, we show that five unrelated effectors and two membrane proteins from Ustilago maydis, a biotrophic fungus causing smut disease in corn, form a stable protein complex. All seven genes appear co-regulated and are only expressed during colonization. Single mutants arrest in the epidermal layer, fail to suppress host defence responses and fail to induce non-host resistance, two reactions that likely depend on translocated effectors. The complex is anchored in the fungal membrane, protrudes into host cells and likely contacts channel-forming plant plasma membrane proteins. Constitutive expression of all seven complex members resulted in a surface-exposed form in cultured U. maydis cells. As orthologues of the complex-forming proteins are conserved in smut fungi, the complex may become an interesting fungicide target.


2021 ◽  
Author(s):  
Norihiro Takekawa ◽  
Tomoko Kubori ◽  
Tomoya Iwai ◽  
Hiroki Nagai ◽  
Katsumi Imada

Pathogenic bacteria have acquired a vast array of eukaryotic-like proteins via intimate interaction with host cells. Bacterial effector proteins that function as ubiquitin ligases and deubiquitinases (DUBs) are remarkable examples of such molecular mimicry. LotA, a Legionella pneumophila effector, belongs to the ovarian tumor (OTU) superfamily, which regulates diverse ubiquitin signals by their DUB activities. LotA harbors two OTU domains that have distinct reactivities; the first one is responsible for the cleavage of the K6-linked ubiquitin chain, and the second one shows an uncommon preference for long chains of ubiquitin. Here, we report the crystal structure of a middle domain of LotA (LotA M ), which contains the second OTU domain. LotA M consists of two distinct subdomains, a catalytic domain having high structural similarity with human OTU DUBs and an extended helical lobe (EHL) domain, which is characteristically conserved only in Legionella OTU DUBs. The docking simulation of LotA M with ubiquitin suggested that hydrophobic and electrostatic interactions between the EHL of LotA M and the C-terminal region of ubiquitin are crucial for the binding of ubiquitin to LotA M . The structure-based mutagenesis demonstrated that the acidic residue in the characteristic short helical segment termed the ‘helical arm’ is essential for the enzymatic activity of LotA M . The EHL domain of the three Legionella OTU DUBs, LotA, LotB, and LotC, share the ‘helical arm’ structure, suggesting that the EHL domain defines the Lot-OTUs as a unique class of DUBs. Importance To successfully colonize, some pathogenic bacteria hijack the host ubiquitin system. Legionella OTU-like-DUBs (Lot-DUBs) are novel bacterial deubiquitinases found in effector proteins of L. pneumophila . LotA is a member of Lot-DUBs and has two OTU domains (OTU1 and OTU2). We determined the structure of a middle fragment of LotA (LotA M ), which includes OTU2. LotA M consists of the conserved catalytic domain and the Legionella OTUs-specific EHL domain. The docking simulation with ubiquitin and the mutational analysis suggested that the acidic surface in the EHL is essential for enzymatic activity. The structure of the EHL differs from those of other Lot-DUBs, suggesting that the variation of the EHL is related to the variable cleaving specificity of each DUB.


2012 ◽  
Vol 3 (6) ◽  
pp. 571-580 ◽  
Author(s):  
Girish K. Radhakrishnan ◽  
Gary A. Splitter

AbstractThe eukaryotic cytoskeleton is a vulnerable target of many microbial pathogens during the course of infection. Rearrangements of host cytoskeleton benefit microbes in various stages of their infection cycle such as invasion, motility, and persistence. Bacterial pathogens deliver a number of effector proteins into host cells for modulating the dynamics of actin and microtubule cytoskeleton. Alteration of the actin cytoskeleton is generally achieved by bacterial effectors that target the small GTPases of the host. Modulation of microtubule dynamics involves direct interaction of effector proteins with the subunits of microtubules or recruiting cellular proteins that affect microtubule dynamics. This review will discuss effector proteins from animal and human bacterial pathogens that either destabilize or stabilize host microtubules to advance the infectious process. A compilation of these research findings will provide an overview of known and unknown strategies used by various bacterial effectors to modulate the host microtubule dynamics. The present review will undoubtedly help direct future research to determine the mechanisms of action of many bacterial effector proteins and contribute to understanding the survival strategies of diverse adherent and invasive bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document