scholarly journals The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Michael Luke Carlson ◽  
John William Young ◽  
Zhiyu Zhao ◽  
Lucien Fabre ◽  
Daniel Jun ◽  
...  

Membrane proteins are difficult to work with due to their insolubility in aqueous solution and quite often their poor stability in detergent micelles. Here, we present the peptidisc for their facile capture into water-soluble particles. Unlike the nanodisc, which requires scaffold proteins of different lengths and precise amounts of matching lipids, reconstitution of detergent solubilized proteins in peptidisc only requires a short amphipathic bi-helical peptide (NSPr) and no extra lipids. Multiple copies of the peptide wrap around to shield the membrane-exposed part of the target protein. We demonstrate the effectiveness of this ‘one size fits all’ method using five different membrane protein assemblies (MalFGK2, FhuA, SecYEG, OmpF, BRC) during ‘on-column’, ‘in-gel’, and ‘on-bead’ reconstitution embedded within the membrane protein purification protocol. The peptidisc method is rapid and cost-effective, and it may emerge as a universal tool for high-throughput stabilization of membrane proteins to advance modern biological studies.

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 780
Author(s):  
Dongdong Li ◽  
Wendan Chu ◽  
Xinlei Sheng ◽  
Wenqi Li

Membrane proteins are involved in various cellular processes. However, purification of membrane proteins has long been a challenging task, as membrane protein stability in detergent is the bottleneck for purification and subsequent analyses. Therefore, the optimization of detergent conditions is critical for the preparation of membrane proteins. Here, we utilize analytical ultracentrifugation (AUC) to examine the effects of different detergents (OG, Triton X-100, DDM), detergent concentrations, and detergent supplementation on the behavior of membrane protein TmrA. Our results suggest that DDM is more suitable for the purification of TmrA compared with OG and TritonX-100; a high concentration of DDM yields a more homogeneous protein aggregation state; supplementing TmrA purified with a low DDM concentration with DDM maintains the protein homogeneity and aggregation state, and may serve as a practical and cost-effective strategy for membrane protein purification.


2021 ◽  
Author(s):  
Kristen Gaffney ◽  
Ruiqiong Guo ◽  
Michael D Bridges ◽  
Daoyang Chen ◽  
Shaima Muhammednazaar ◽  
...  

Defining the denatured state ensemble (DSE) and intrinsically disordered proteins is essential to understanding protein folding, chaperone action, degradation, translocation and cell signaling. While a majority of studies have focused on water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we reconstituted the DSE of a helical bundle membrane protein GlpG of Escherichia coli in native lipid bilayers and measured its conformation and compactness. The DSE was obtained using steric trapping, which couples spontaneous denaturation of a doubly biotinylated GlpG to binding of two bulky monovalent streptavidin molecules. Using limited proteolysis and mass spectrometry, we mapped the flexible regions in the DSE. Using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy, we determined the dimensions of the DSE. Finally, we employed our Upside model for molecular dynamics simulations to generate the DSE including the collapsed and fully expanded states in a bilayer. We find that the DSE is highly dynamic involving the topology changes of transmembrane segments and their unfolding. The DSE is expanded relative to the native state, but only to 55-90% of the fully expanded condition. The degree of expansion depends on the chemical potential with regards to local packing and the lipid composition. Our result suggests that the native lipid bilayer promotes the association of helices in the DSE of membrane proteins and, probably in general, facilitating interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Jonas Borch ◽  
Thomas Hamann

Abstract A major challenge in the research on membrane-anchored and integral membrane protein complexes is to obtain these in a functionally active, water-soluble, and monodisperse form. This requires the incorporation of the membrane proteins into a native-like membrane or detergent micelle that mimics the properties of the original biological membrane. However, solubilization in detergents or reconstitution in liposomes or supported monolayers sometimes suffers from loss of activity and problematic analyses due to heterogeneity and aggregation. A developing technology termed nanodiscs exploits discoidal phospholipid bilayers encircled by a stabilizing amphipatic helical membrane scaffold protein to reconstitute membranes with integral proteins. After reconstitution, the membrane nanodisc is soluble, stable, and monodisperse. In the present review, we outline the biological inspiration for nanodiscs as discoidal high-density lipoproteins, the assembly and handling of nanodiscs, and finally their diverse biochemical applications. In our view, major advantages of nanodisc technology for integral membrane proteins is homogeneity, control of oligomerization state, access to both sides of the membrane, and control of lipids in the local membrane environment of the integral protein.


2018 ◽  
Vol 46 (6) ◽  
pp. 1541-1549
Author(s):  
Andrea E. Rawlings

The inherent hydrophobicity of membrane proteins is a major barrier to membrane protein research and understanding. Their low stability and solubility in aqueous environments coupled with poor expression levels make them a challenging area of research. For many years, the only way of working with membrane proteins was to optimise the environment to suit the protein, through the use of different detergents, solubilising additives, and other adaptations. However, with innovative protein engineering methodologies, the membrane proteins themselves are now being adapted to suit the environment. This mini-review looks at the types of adaptations which are applied to membrane proteins from a variety of different fields, including water solubilising fusion tags, thermostabilising mutation screening, scaffold proteins, stabilising protein chimeras, and isolating water-soluble domains.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Erik Henrich ◽  
Oliver Peetz ◽  
Christopher Hein ◽  
Aisha Laguerre ◽  
Beate Hoffmann ◽  
...  

Membrane proteins frequently assemble into higher order homo- or hetero-oligomers within their natural lipid environment. This complex formation can modulate their folding, activity as well as substrate selectivity. Non-disruptive methods avoiding critical steps, such as membrane disintegration, transfer into artificial environments or chemical modifications are therefore essential to analyze molecular mechanisms of native membrane protein assemblies. The combination of cell-free synthetic biology, nanodisc-technology and non-covalent mass spectrometry provides excellent synergies for the analysis of membrane protein oligomerization within defined membranes. We exemplify our strategy by oligomeric state characterization of various membrane proteins including ion channels, transporters and membrane-integrated enzymes assembling up to hexameric complexes. We further indicate a lipid-dependent dimer formation of MraY translocase correlating with the enzymatic activity. The detergent-free synthesis of membrane protein/nanodisc samples and the analysis by LILBID mass spectrometry provide a versatile platform for the analysis of membrane proteins in a native environment.


2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


2005 ◽  
Vol 33 (5) ◽  
pp. 910-912 ◽  
Author(s):  
P.J. Bond ◽  
J. Cuthbertson ◽  
M.S.P. Sansom

Interactions between membrane proteins and detergents are important in biophysical and structural studies and are also biologically relevant in the context of folding and transport. Despite a paucity of high-resolution data on protein–detergent interactions, novel methods and increased computational power enable simulations to provide a means of understanding such interactions in detail. Simulations have been used to compare the effect of lipid or detergent on the structure and dynamics of membrane proteins. Moreover, some of the longest and most complex simulations to date have been used to observe the spontaneous formation of membrane protein–detergent micelles. Common mechanistic steps in the micelle self-assembly process were identified for both α-helical and β-barrel membrane proteins, and a simple kinetic mechanism was proposed. Recently, simplified (i.e. coarse-grained) models have been utilized to follow long timescale transitions in membrane protein–detergent assemblies.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng-Wen He ◽  
Xue-Fei Cui ◽  
Shao-Jie Ma ◽  
Qin Xu ◽  
Yan-Peng Ran ◽  
...  

Abstract Background The vacuole/lysosome is the final destination of autophagic pathways, but can also itself be degraded in whole or in part by selective macroautophagic or microautophagic processes. Diverse molecular mechanisms are involved in these processes, the characterization of which has lagged behind those of ATG-dependent macroautophagy and ESCRT-dependent endosomal multivesicular body pathways. Results Here we show that as yeast cells gradually exhaust available nutrients and approach stationary phase, multiple vacuolar integral membrane proteins with unrelated functions are degraded in the vacuolar lumen. This degradation depends on the ESCRT machinery, but does not strictly require ubiquitination of cargos or trafficking of cargos out of the vacuole. It is also temporally and mechanistically distinct from NPC-dependent microlipophagy. The turnover is facilitated by Atg8, an exception among autophagy proteins, and an Atg8-interacting vacuolar membrane protein, Hfl1. Lack of Atg8 or Hfl1 led to the accumulation of enlarged lumenal membrane structures in the vacuole. We further show that a key function of Hfl1 is the membrane recruitment of Atg8. In the presence of Hfl1, lipidation of Atg8 is not required for efficient cargo turnover. The need for Hfl1 can be partially bypassed by blocking Atg8 delipidation. Conclusions Our data reveal a vacuolar membrane protein degradation process with a unique dependence on vacuole-associated Atg8 downstream of ESCRTs, and we identify a specific role of Hfl1, a protein conserved from yeast to plants and animals, in membrane targeting of Atg8.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 155
Author(s):  
Ekaitz Errasti-Murugarren ◽  
Paola Bartoccioni ◽  
Manuel Palacín

Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.


Sign in / Sign up

Export Citation Format

Share Document