scholarly journals Hemimetabolous insects elucidate the origin of sexual development via alternative splicing

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Judith Wexler ◽  
Emily Kay Delaney ◽  
Xavier Belles ◽  
Coby Schal ◽  
Ayako Wada-Katsumata ◽  
...  

Insects are the only known animals in which sexual differentiation is controlled by sex-specific splicing. The doublesex transcription factor produces distinct male and female isoforms, which are both essential for sex-specific development. dsx splicing depends on transformer, which is also alternatively spliced such that functional Tra is only present in females. This pathway has evolved from an ancestral mechanism where dsx was independent of tra and expressed and required only in males. To reconstruct this transition, we examined three basal, hemimetabolous insect orders: Hemiptera, Phthiraptera, and Blattodea. We show that tra and dsx have distinct functions in these insects, reflecting different stages in the changeover from a transcription-based to a splicing-based mode of sexual differentiation. We propose that the canonical insect tra-dsx pathway evolved via merger between expanding dsx function (from males to both sexes) and narrowing tra function (from a general splicing factor to dedicated regulator of dsx).

2019 ◽  
Author(s):  
Judith Wexler ◽  
Emily K. Delaney ◽  
Xavier Belles ◽  
Coby Schal ◽  
Ayako Wada-Katsumata ◽  
...  

ABSTRACTInsects are the only animals in which sexual differentiation is controlled by sex-specific RNA splicing. Thedoublesex(dsx) transcription factor produces distinct male and female protein isoforms (DsxM and DsxF) under the control of the RNA splicing factortransformer(tra).traitself is also alternatively spliced so that a functional Tra protein is only present in females; thus, DsxM is produced by default, while DsxF expression requires Tra. The sex-specific Dsx isoforms are essential for both male and female sexual differentiation. This pathway is profoundly different from the molecular mechanisms that control sex-specific development in other animal groups. In animals as different as vertebrates, nematodes, and crustaceans, sexual differentiation involves male-specific transcription ofdsx-related transcription factors that are not alternatively spliced and play no role in female sexual development. To understand how the unique splicing-based mode of sexual differentiation found in insects evolved from a more ancestral transcription-based mechanism, we examineddsxandtraexpression in three basal, hemimetabolous insect orders. We find that functional Tra protein is limited to females in the kissing bugRhodnius prolixus(Hemiptera), but is present in both sexes in the lousePediculus humanus(Phthiraptera) and the cockroachBlattella germanica(Blattodea). Although alternatively spliceddsxisoforms are seen in all these insects, they are sex-specific in the cockroach and the kissing bug but not in the louse. InB. germanica, RNAi experiments show thatdsxis necessary for male, but not female, sexual differentiation, whiletracontrols female development via adsx-independent pathway. Our results suggest that the distinctive insect mechanism based on thetra-dsxsplicing cascade evolved in a gradual, mosaic process: sex-specific splicing ofdsxpredates its role in female sexual differentiation, while the role oftrain regulatingdsxsplicing and in sexual development more generally predates sex-specific expression of the Tra protein. We present a model where the canonicaltra-dsxaxis originated via merger between expandingdsxfunction (from males to both sexes) and narrowingtrafunction (from a general splicing factor to the dedicated regulator ofdsx).


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 896
Author(s):  
Yuenan Zhou ◽  
Pei Yang ◽  
Shuang Xie ◽  
Min Shi ◽  
Jianhua Huang ◽  
...  

The endoparasitic wasp Cotesia vestalis is an important biological agent for controlling the population of Plutella xylostella, a major pest of cruciferous crops worldwide. Though the genome of C. vestalis has recently been reported, molecular mechanisms associated with sexual development have not been comprehensively studied. Here, we combined PacBio Iso-Seq and Illumina RNA-Seq to perform genome-wide profiling of pharate adult and adult development of male and female C. vestalis. Taking advantage of Iso-Seq full-length reads, we identified 14,466 novel transcripts as well as 8770 lncRNAs, with many lncRNAs showing a sex- and stage-specific expression pattern. The differentially expressed gene (DEG) analyses showed 2125 stage-specific and 326 sex-specific expressed genes. We also found that 4819 genes showed 11,856 alternative splicing events through combining the Iso-Seq and RNA-Seq data. The results of comparative analyses showed that most genes were alternatively spliced across developmental stages, and alternative splicing (AS) events were more prevalent in females than in males. Furthermore, we identified six sex-determining genes in this parasitic wasp and verified their sex-specific alternative splicing profiles. Specifically, the characterization of feminizer and doublesex splicing between male and female implies a conserved regulation mechanism of sexual development in parasitic wasps.


2006 ◽  
Vol 400 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Cécile Robard ◽  
Alex Daviau ◽  
Marco Di Fruscio

Mutations in the Drosophila kep1 gene, encoding a single maxi KH (K homology) domain-containing RNA-binding protein, result in a reduction of fertility in part due to the disruption of the apoptotic programme during oogenesis. This disruption is concomitant with the appearance of an alternatively spliced mRNA isoform encoding the inactive caspase dredd. We generated a Kep1 antibody and have found that the Kep1 protein is present in the nuclei of both the follicle and nurse cells during all stages of Drosophila oogenesis. We have shown that the Kep1 protein is phosphorylated in ovaries induced to undergo apoptosis following treatment with the topoisomerase I inhibitor camptothecin. We have also found that the Kep1 protein interacts specifically with the SR (serine/arginine-rich) protein family member ASF/SF2 (alternative splicing factor/splicing factor 2). This interaction is independent of the ability of Kep1 to bind RNA, but is dependent on the phosphorylation of the Kep1 protein, with the interaction between Kep1 and ASF/SF2 increasing in the presence of activated Src. Using a CD44v5 alternative splicing reporter construct, we observed 99% inclusion of the alternatively spliced exon 5 following kep1 transfection in a cell line that constitutively expresses activated Src. This modulation in splicing was not observed in the parental NIH 3T3 cell line in which we obtained 7.5% exon 5 inclusion following kep1 transfection. Our data suggest a mechanism of action in which the in vivo phosphorylation status of the Kep1 protein affects its affinity towards its protein binding partners and in turn may allow for the modulation of alternative splice site selection in Kep1–ASF/SF2-dependent target genes.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 457-457
Author(s):  
Govardhan Anande ◽  
Ashwin Unnikrishnan ◽  
Nandan Deshpande ◽  
Sylvain Mareschal ◽  
Aarif M. N. Batcha ◽  
...  

RNA splicing is a fundamental biological process that generates protein diversity from a finite set of genes. Recurrent somatic mutations of genes involved in RNA splicing are present at high frequency in Myelodysplasia (up to 70%) but less so in Acute Myeloid Leukemia (AML; less than 20%). To investigate whether there were aberrant and recurrent RNA splicing events in the AML transcriptome that were associated with poor prognosis in the absence of splicing factor mutations, we developed a bioinformatics pipeline to systematically annotate and quantify alternative splicing events from RNA-sequencing data (Fig A). We first analysed publicly available RNA-seq data from The Cancer Genome Atlas (TCGA, n=170). We focussed on non-M3 AML patients with no splicing factor mutations (based on reported genomic sequencing and verified by re-analysis of RNA-seq data from all patients) who had received intensive chemotherapy. We segregated these patients based on their European Leukaemia Net (ELN) risk classification and identified 1290 alternatively spliced events impacting 910 genes that were significantly different (FDR<0.05) between all ELNAdv (n=41) versus all ELNFav patients (n=21, Fig B). The majority were exon skipping events (716 events, 62%, Fig B-C), followed by intron retention (201 events, 15.6%, Fig B). We next used RNA-seq data from a second non-M3 AML patient cohort (ClinSeq- Sweden; ELNAdv, n=75 and ELNFav, n=47), detecting 2507 events mapping to 1566 genes. Comparing across the two cohorts, 222 shared genes were detected to be affected by alternative splicing (Fig D). Ingenuity pathway analysis associated these genes with pathways related to protein translation. In order to prioritise those alternatively spliced events most likely to have a deleterious function, we developed an analytical framework to predict their impact on protein structure (Fig E). 87 alternatively spliced events, 25.81% of the commonly shared splicing events, relating to 78 genes (35.13% of all genes) were predicted to directly alter highly conserved protein domains within the affected genes, leading to either a complete (~25%, Fig E) or a partial loss of a domain (20%, Fig E). These in silico predictions are likely to be an underestimate of the true impact, as splicing alterations mapping to poorly annotated domains or affecting the tertiary structure of proteins would be missed. A number of splicing factors themselves were differentially spliced, with the alternative splicing predicted to have functional consequences. This was exemplified by hnRNPA1, a factor with well-established roles in splicing, is itself alternatively spliced in patients and predicted to be deleterious. Consistent with this, motif scanning analyses indicated that a number of mis-spliced transcripts had hnRNPA1 binding motifs (Fig F). To assess the impact of these alternatively spliced events (that were predicted to also disrupt highly conserved protein domains) on the transcriptome, we simultaneously quantified differential gene expression. IPA analysis of the 602 genes that were differentially expressed between ELNAdv and ELNFav patients and shared between both TCGA and ClinSeq cohorts indicated that they were associated with pathways (Fig G) that were distinct from those associated with aberrantly spliced genes (Fig D). A number of pathways related to inflammation were enriched amongst the genes observed to be upregulated in ELNAdv patients (Fig G). Network analyses integrating the alternatively spliced genes with differentially expressed genes revealed strong interactions (Fig H), indicating functional associations between these biological events. Given these strong network interactions, we investigated the potential prognostic significance of these alternatively spliced events. To this end, we utilised machine-learning methods to derive a "splicing signature" of four mis-spliced genes with a predictive capacity equivalent to the ELN (Fig I). The splicing signature further refined existing risk prediction algorithms to improve the classification of patients (Fig J). Taken together, we report the presence of extensive deregulation of RNA splicing in AML patients even in the absence of splicing factor mutations. Many of these events were shared in patients with adverse outcomes and their impact on the AML transcriptome points towards vulnerabilities that could be targeted. Figure Disclosures Unnikrishnan: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Lehmann:TEVA: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Abbive: Membership on an entity's Board of Directors or advisory committees. Pimanda:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0175523 ◽  
Author(s):  
Shuiling Jin ◽  
Hairui Su ◽  
Ngoc-Tung Tran ◽  
Jing Song ◽  
Sydney S. Lu ◽  
...  

Author(s):  
Hongda Liu ◽  
Zheng Gong ◽  
Kangshuai Li ◽  
Qun Zhang ◽  
Zekuan Xu ◽  
...  

Abstract Background The Mnk2 kinase, encoded by MKNK2 gene, plays critical roles in MAPK signaling and was involved in oncogenesis. Human MKNK2 pre-mRNA can be alternatively spliced into two splicing isoforms, the MKNK2a and MKNK2b, thus yielding Mnk2a and Mnk2b proteins with different domains. The involvement of Mnk2 alternative splicing in colon cancer has been implicated based on RNA-sequencing data from TCGA database. This study aimed at investigating the upstream modulators and clinical relevance of Mnk2 alternative splicing in colon adenocarcinoma (CAC). Methods PCR, western blotting and immunohistochemistry (IHC) were performed to assess the expression of Mnk2 and upstream proteins in CAC. The function of Mnk2 and its regulators were demonstrated in different CAC cell lines as well as in xenograft models. Two independent cohorts of CAC patients were used to reveal the clinical significance of MKNK2 alternative splicing. Results Comparing with adjacent nontumorous tissue, CAC specimen showed a decreased MKNK2a level and an increased MKNK2b level, which were correlated with KRAS mutation and tumor size. The SRSF1 (serine/arginine-rich splicing factor 1) was further confirmed to be the major splicing factor targeting MKNK2 in CAC cells. Higher expression of SRPK1/2 or decreased activity of PP1α were responsible for enhancing SRSF1 phosphorylation and nucleus translocation, subsequently resulted in a switch of MKNK2 alternative splicing. Conclusions Our data showed that phosphorylation and subcellular localization of SRSF1 were balanced by SRPK1/2 and PP1α in CAC cells. High nucleus SRSF1 promoted MKNK2 splicing into MKNK2b instead of MNK2a, consequently enhanced tumor proliferation.


2020 ◽  
Author(s):  
A. Rouf Banday ◽  
Olusegun O. Onabajo ◽  
Seraph Han-Yin Lin ◽  
Adeola Obajemu ◽  
Joselin M. Vargas ◽  
...  

ABSTRACTAPOBEC3A (A3A) and APOBEC3B (A3B) enzymes drive APOBEC-mediated mutagenesis, but the understanding of the regulation of their mutagenic activity remains limited. Here, we showed that mutagenic and non-mutagenic A3A and A3B enzymes are produced by canonical and alternatively spliced A3A and A3B isoforms, respectively. Notably, increased expression of the canonical A3B isoform, which encodes the mutagenic A3B enzyme, predicted shorter progression-free survival of bladder cancer patients. Expression of the mutagenic A3B isoform was reduced by exon 5 skipping, generating a non-mutagenic A3B isoform. The exon 5 skipping, which was dependent on the interaction between SF3B1 splicing factor and weak branch point sites in intron 4, could be enhanced by an SF3B1 inhibitor, decreasing the production of the mutagenic A3B enzyme. Thus, our results underscore the role of A3B, especially in bladder cancer, and implicate alternative splicing of A3B as a mechanism and therapeutic target to restrict APOBEC-mediated mutagenesis.


2018 ◽  
Vol 50 (4) ◽  
pp. 1441-1459 ◽  
Author(s):  
Anlong Liu ◽  
Han Zhang ◽  
Fenfen Qin ◽  
Qisheng Wang ◽  
Qinmei Sun ◽  
...  

Background/Aims: Opiates are potent analgesics but their clinical use is limited by sex-associated side effects, such as drug tolerance, opioid-induced hyperalgesia and withdrawal reaction. OPRM1, as the main receptor of opioids, plays an important role in the pharmacological process of opioids in rodents and human. We have previously investigated OPRM1, the μ opioid receptor gene, which have dozens of alternatively spliced variants probably correlating with opioid-induced effects in brain regions of four inbred mouse strains and demonstrated the strain-specific expressions of these splice variants. Also, within a strain, the regional expression patterns of some of the variants were similar while others were opposite. Thus, we are aiming to seek out the relationship between sex differences and these alternatively spliced variants. Methods: The present studies follow a SYBR green quantitative PCR (qPCR) which we had used before to examine the expression of OPRM1 splice variant mRNAs in selected brain regions of male and female C57BL/6 mice. Sex-associated differences in baseline latency, opioid-induced tolerance, analgesia and addiction were examined and determined by Tail-flick test, jumps and statistical analysis. Results: The mRNA levels of opioid receptor gene splice variants in male and female mice showed significant differences among the brain regions, implying region-specific alternative splicing of the OPRM1 gene, which was consistent with our previous study. More importantly, the complete mRNA expression profiles of the OPRM1 splice variants was also gender-specific, suggesting a sexual influence on OPRM1 alternative splicing. Conclusion: In brief, we put forward that the distinctions among baseline latency, opioid-induced tolerance, analgesia and physical dependence in male and female mice might correlate with sex associated differential expressions of OPRM1 gene.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Jian Wang ◽  
Geng G. Tian ◽  
Zhuxia Zheng ◽  
Bo Li ◽  
Qinghe Xing ◽  
...  

Abstract Background Mammalian gonadal development is crucial for fertility. Sexual differentiation, meiosis and gametogenesis are critical events in the process of gonadal development. Abnormalities in any of these events may cause infertility. However, owing to the complexity of these developmental events, the underlying molecular mechanisms are not fully understood and require further research. Results In this study, we employed RNA sequencing to examine transcriptome profiles of murine female and male gonads at crucial stages of these developmental events. By bioinformatics analysis, we identified a group of candidate genes that may participate in sexual differentiation, including Erbb3, Erbb4, and Prkg2. One hundred and two and 134 candidate genes that may be important for female and male gonadal development, respectively, were screened by analyzing the global gene expression patterns of developing female and male gonads. Weighted gene co-expression network analysis was performed on developing female gonads, and we identified a gene co-expression module related to meiosis. By alternative splicing analysis, we found that cassette-type exon and alternative start sites were the main forms of alternative splicing in developing gonads. A considerable portion of differentially expressed and alternatively spliced genes were involved in meiosis. Conclusion Taken together, our findings have enriched the gonadal transcriptome database and provided novel candidate genes and avenues to research the molecular mechanisms of sexual differentiation, meiosis, and gametogenesis.


Development ◽  
2000 ◽  
Vol 127 (20) ◽  
pp. 4469-4480 ◽  
Author(s):  
W. Yi ◽  
J.M. Ross ◽  
D. Zarkower

Sex determination is controlled by global regulatory genes, such as tra-1 in Caenorhabditis elegans, Sex lethal in Drosophila, or Sry in mammals. How these genes coordinate sexual differentiation throughout the body is a key unanswered question. tra-1 encodes a zinc finger transcription factor, TRA-1A, that regulates, directly or indirectly, all genes required for sexual development. mab-3 (male abnormal 3), acts downstream of tra-1 and is known to be required for sexual differentiation of at least two tissues. mab-3 directly regulates yolk protein transcription in the intestine and specifies male sense organ differentiation in the nervous system. It encodes a transcription factor related to the products of the Drosophila sexual regulator doublesex (dsx), which also regulates yolk protein transcription and male sense-organ differentiation. The similarities between mab-3 and dsx led us to suggest that some aspects of sex determination may be evolutionarily conserved. Here we find that mab-3 is also required for expression of male-specific genes in sensory neurons of the head and tail and for male interaction with hermaphrodites. These roles in male development and behavior suggest further functional similarity to dsx. In male sensory ray differentiation we find that MAB-3 acts synergistically with LIN-32, a neurogenic bHLH transcription factor. Expression of LIN-32 is spatially restricted by the combined action of the Hox gene mab-5 and the hairy homolog lin-22, while MAB-3 is expressed throughout the lateral hypodermis. Finally, we find that mab-3 transcription is directly regulated in the intestine by TRA-1A, providing a molecular link between the global regulatory pathway and terminal sexual differentiation.


Sign in / Sign up

Export Citation Format

Share Document