scholarly journals A rat epigenetic clock recapitulates phenotypic aging and co-localizes with heterochromatin

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Morgan Levine ◽  
Ross A McDevitt ◽  
Margarita Meer ◽  
Kathy Perdue ◽  
Andrea Di Francesco ◽  
...  

Robust biomarkers of aging have been developed from DNA methylation in humans and more recently, in mice. This study aimed to generate a novel epigenetic clock in rats—a model with unique physical, physiological, and biochemical advantages—by incorporating behavioral data, unsupervised machine learning, and network analysis to identify epigenetic signals that not only track with age, but also relates to phenotypic aging. Reduced representation bisulfite sequencing (RRBS) data was used to train an epigenetic age (DNAmAge) measure in Fischer 344 CDF (F344) rats. This measure correlated with age at (r = 0.93) in an independent sample, and related to physical functioning (p=5.9e-3), after adjusting for age and cell counts. DNAmAge was also found to correlate with age in male C57BL/6 mice (r = 0.79), and was decreased in response to caloric restriction. Our signatures driven by CpGs in intergenic regions that showed substantial overlap with H3K9me3, H3K27me3, and E2F1 transcriptional factor binding.

Author(s):  
Giovanni E Finesso ◽  
Ross A McDevitt ◽  
Roshni Roy ◽  
Lauren R Brinster ◽  
Andrea Di Francesco ◽  
...  

Abstract Age-dependent differences in methylation at specific cytosine-guanosine sites (CpGs) have been used in “epigenetic clock” formulas to predict age. Deviations of epigenetic age from chronological age are informative of health status and are associated with adverse health outcomes, including mortality. In most cases, epigenetic clocks are performed on methylation from DNA extracted from circulating blood cells. However, the effect of neoplastic cells in the circulation on estimation and interpretation of epigenetic clocks is not well understood. Here, we explored this using Fischer 344 (F344) rats, a strain that often develops large granular lymphocyte leukemia (LGL). We found clear histological markers of LGL pathology in the spleens and livers of 27 out of 61 rats aged 17-27 months. We assessed DNA methylation by reduced representation bisulfite sequencing with coverage of 3 million cytosine residues. Although LGL broadly increased DNA methylation variability, it did not change epigenetic aging. Despite this, inclusion of rats with LGL in clock training sets significantly altered predictor selection probability at 83 of 121 commonly utilized CpGs. Furthermore, models trained on rat samples that included individuals with LGL had greater absolute age error than those trained exclusively on LGL-free rats (39% increase; p<0.0001). We conclude that the epigenetic signals for aging and LGL are distinct, such that LGL assessment is not necessary for valid measures of epigenetic age in F344 rats. The precision and architecture of constructed epigenetic clock formulas, however, can be influenced by the presence of neoplastic hematopoietic cells in training set populations.


2020 ◽  
Author(s):  
Morgan Levine ◽  
Ross McDevitt ◽  
Margarita Meer ◽  
Kathy Perdue ◽  
Andrea Di Francesco ◽  
...  

ABSTRACTAging has been shown to be a strong driver of DNA methylation changes, leading to the development of robust biomarkers in humans and more recently, in mice. This study aimed to generate a novel epigenetic clock in rats—a model with unique physical, physiological, and biochemical advantages for studying mammalian aging. Additionally, we incorporated behavioral data, unsupervised machine learning, and network analysis to identify epigenetic signals that not only track with age, but also relate to phenotypic aging and reflect higher-order molecular aging changes. We used DNAm data from reduced representation bisulfite sequencing (RRBS) to train an epigenetic age (DNAmAge) measure in Fischer 344 CDF (F344) rats. In an independent sample of n=32 F344 rats, we found that this measure correlated with age at (r=0.93), and related to physical functioning (5.9e-3), after adjusting for age and differential cell counts. DNAmAge was also found to correlate with age in C57BL/6 mice (r=0.79), and was decreased in response to caloric restriction (CR), such that the longer the animal was on a CR diet, the greater the decrease in DNAm. We also observed resetting of DNAm when kidney and lung fibroblasts when converted to induced pluripotent stem cells (iPSCs). Using weighted gene correlation network analysis (WGCNA) we identified two modules that appeared to drive our DNAmAge measure. These two modules contained CpGs in intergenic regions that showed substantial overlap with histone marks H3K9me3, H3K27me3, and E2F1 transcriptional factor binding. In moving forward, our ability to unravel the complex signals linking DNA methylation changes to functional aging would require experimental studies in model systems in which longitudinal epigenetic changes can be related to other molecular and physiological hallmarks of aging.


2020 ◽  
Author(s):  
Jean-François Lemaître ◽  
Benjamin Rey ◽  
Jean-Michel Gaillard ◽  
Corinne Régis ◽  
Emmanuelle Gilot ◽  
...  

AbstractDNA methylation-based biomarkers of aging (epigenetic clocks) promise to lead to new insights in the evolutionary biology of ageing. Relatively little is known about how the natural environment affects epigenetic aging effects in wild species. In this study, we took advantage of a unique long-term (>40 years) longitudinal monitoring of individual roe deer (Capreolus capreolus) living in two wild populations (Chizé and Trois Fontaines, France) facing different ecological contexts to investigate the relationship between chronological age and levels of DNA methylation (DNAm). We generated novel DNA methylation data from n=90 blood samples using a custom methylation array (HorvathMammalMethylChip40). We present three DNA methylation-based estimators of age (DNAm or epigenetic age), which were trained in males, females, and both sexes combined. We investigated how sex differences influenced the relationship between DNAm age and chronological age through the use of sex-specific epigenetic clocks. Our results highlight that both populations and sex influence the epigenetic age, with the bias toward a stronger male average age acceleration (i.e. differences between epigenetic age and chronological ages) particularly pronounced in the population facing harsh environmental conditions. Further, we identify the main sites of epigenetic alteration that have distinct aging patterns across the two sexes. These findings open the door to promising avenues of research at the crossroad of evolutionary biology and biogerontology.


Author(s):  
Steve Horvath ◽  
Kavita Singh ◽  
Ken Raj ◽  
Shraddha Khairnar ◽  
Akshay Sanghavi ◽  
...  

AbstractYoung blood plasma is known to confer beneficial effects on various organs in mice. However, it was not known whether young plasma rejuvenates cells and tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly-accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=593 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=850 human tissue samples to the training data. We employed these six clocks to investigate the rejuvenation effects of a plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. Cellular senescence, which is not associated with epigenetic aging, was also considerably reduced in vital organs. Overall, this study demonstrates that a plasma-derived treatment markedly reverses aging according to epigenetic clocks and benchmark biomarkers of aging.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S33-S33
Author(s):  
Morgan E Levine ◽  
Ross McDevitt ◽  
Luigi Ferrucci ◽  
Rafael deCabo

Abstract Evidence from humans suggests that incorporation of phenotypic aging measures in the development of epigenetic clocks leads to more functionally relevant biomarkers. As a result, the aim of this study was to utilize a deeply phenotyped rat cohort—that included data from rotarod, open field, frailty index, and FACS—to generate a novel epigenetic clock. DNA methylation was assessed via reduced representation bisulfite sequencing (RRBS) for n=142 male Fischer rats from NIA aging colony, ranging in age from 1 to 27 months. Phenotypic traits were combined to generate an multi-system aging measure that was then used to train the epigenetic clock. Using an independent validation sample, age-adjusted epigenetic clock measures were associated with numerous traits, including: open field time resting (p=0.005), open field time climbing (p=0.001), body weight (p=0.02), and rotarod max (p=0.04). In moving forward, it will be important to examine cross-species comparisons, longitudinal change, and functional enrichment.


Author(s):  
Paweł Kordowitzki ◽  
Amin Haghani ◽  
Joseph A. Zoller ◽  
Caesar Z. Li ◽  
Ken Raj ◽  
...  

ABSTRACTCattle are an attractive animal model of fertility in women due to their high degree of similarity relative to follicle selection, embryo cleavage, blastocyst formation, and gestation length. To facilitate future studies of the epigenetic underpinnings of aging effects in the female reproductive axis, several DNA methylation-based biomarkers of aging (epigenetic clocks) for bovine oocytes are presented. One such clock was germane to only oocytes, while a dual-tissue clock was highly predictive of age in both oocytes and blood. Dual species clocks that apply to both humans and cattle were also developed and evaluated. These epigenetic clocks can be used to accurately estimate the chronological age of the oocyte donor. Both epigenetic clock studies and epigenome wide association studies revealed that blood and oocytes differ substantially with respect aging and the underlying epigenetic signatures that potentially influence the aging process. The rate of epigenetic aging was found to be slower in oocytes compared to blood, however, oocytes appeared to begin at an older epigenetic age. The epigenetic clocks for oocytes are expected to address questions in the field of reproductive aging, including the central question: how to slow aging of oocytes.


2021 ◽  
Vol 14 ◽  
Author(s):  
Francine Grodstein ◽  
Bernardo Lemos ◽  
Lei Yu ◽  
Artemis Iatrou ◽  
Philip L. De Jager ◽  
...  

Epigenetic clocks are among the most promising biomarkers of aging. It is particularly important to establish biomarkers of brain aging to better understand neurodegenerative diseases. To advance application of epigenetic clocks—which were largely created with DNA methylation levels in blood samples—for use in brain, we need clearer evaluation of epigenetic clock behavior in brain, including direct comparisons of brain specimens with blood, a more accessible tissue for research. We leveraged data from the Religious Orders Study and Rush Memory and Aging Project to examine three established epigenetic clocks (Horvath, Hannum, PhenoAge clocks) and a newer clock, trained in cortical tissue. We calculated each clock in three different specimens: (1) antemortem CD4+ cells derived from blood (n = 41); (2) postmortem dorsolateral prefrontal cortex (DLPFC, n = 730); and (3) postmortem posterior cingulate cortex (PCC, n = 186), among older women and men, age 66–108 years at death. Across all clocks, epigenetic age calculated from blood and brain specimens was generally lower than chronologic age, although differences were smallest for the Cortical clock when calculated in the brain specimens. Nonetheless, we found that Pearson correlations of epigenetic to chronologic ages in brain specimens were generally reasonable for all clocks; correlations for the Horvath, Hannum, and PhenoAge clocks largely ranged from 0.5 to 0.7 (all p < 0.0001). The Cortical clock outperformed the other clocks, reaching a correlation of 0.83 in the DLFPC (p < 0.0001) for epigenetic vs. chronologic age. Nonetheless, epigenetic age was quite modestly correlated across blood and DLPFC in 41 participants with paired samples [Pearson r from 0.21 (p = 0.2) to 0.32 (p = 0.05)], indicating that broader research in neurodegeneration may benefit from clocks using CpG sites better conserved across blood and brain. Finally, in analyses stratified by sex, by pathologic diagnosis of Alzheimer disease, and by clinical diagnosis of Alzheimer dementia, correlations of epigenetic to chronologic age remained consistently high across all groups. Future research in brain aging will benefit from epigenetic clocks constructed in brain specimens, including exploration of any advantages of focusing on CpG sites conserved across brain and other tissue types.


2020 ◽  
Vol 22 (1) ◽  
pp. 364
Author(s):  
Qiyuan Han ◽  
Thomas J. Y. Kono ◽  
Charles G. Knutson ◽  
Nicola M. Parry ◽  
Christopher L. Seiler ◽  
...  

Epigenetic dysregulation is hypothesized to play a role in the observed association between inflammatory bowel disease (IBD) and colon tumor development. In the present work, DNA methylome, hydroxymethylome, and transcriptome analyses were conducted in proximal colon tissues harvested from the Helicobacter hepaticus (H. hepaticus)-infected murine model of IBD. Reduced representation bisulfite sequencing (RRBS) and oxidative RRBS (oxRRBS) analyses identified 1606 differentially methylated regions (DMR) and 3011 differentially hydroxymethylated regions (DhMR). These DMR/DhMR overlapped with genes that are associated with gastrointestinal disease, inflammatory disease, and cancer. RNA-seq revealed pronounced expression changes of a number of genes associated with inflammation and cancer. Several genes including Duox2, Tgm2, Cdhr5, and Hk2 exhibited changes in both DNA methylation/hydroxymethylation and gene expression levels. Overall, our results suggest that chronic inflammation triggers changes in methylation and hydroxymethylation patterns in the genome, altering the expression of key tumorigenesis genes and potentially contributing to the initiation of colorectal cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
T. Ząbek ◽  
E. Semik-Gurgul ◽  
T. Szmatoła ◽  
A. Gurgul ◽  
A. Fornal ◽  
...  

Horses are one of the longest-living species of farm animals. Advanced age is often associated with a decrease in body condition, dysfunction of immune system, and late-onset disorders. Due to this, the search for new solutions in the prevention and treatment of pathological conditions of the advanced age of horses is desirable. That is why the identification of aging-related changes in the horse genome is interesting in this respect. In the recent years, the research on aging includes studies of age-related epigenetic effects observed on the DNA methylation level. We applied reduced representation bisulfite sequencing (RRBS) to uncover a range of age DMR sites in genomes of blood leukocytes derived from juvenile and aged horses of native Hucul breed. Genes colocated with age-related differentially methylated regions (age DMRs) are the members of pathways involved in cellular signal transduction, immune response, neurogenesis, differentiation, development, and cancer progression. A positive correlation was found between methylation states and gene expression in particular loci from our data set. Some of described age DMR-linked genes were also reported elsewhere. Obtained results contribute to the knowledge about the molecular basis of aging of equine blood cells.


1988 ◽  
Vol 254 (6) ◽  
pp. R908-R916 ◽  
Author(s):  
R. B. McDonald ◽  
B. A. Horwitz ◽  
J. S. Stern

The inability of old rats to maintain body temperature during cold exposure has been well documented. This study evaluated the effect of exercise on the rates of cold-induced O2 consumption and the contribution of nonshivering thermogenesis (NST) to these rates. Younger (12 mo) and older (24 mo) male Fischer 344 (F344) rats were divided into exercised and sedentary groups. Exercised rats were run on a motor-driven treadmill 60 min/day, at 19-24 m/min, 5 days/wk for 6 mo. At the conclusion of the 6-mo training period, O2 consumption of all four groups was measured at thermoneutrality (26 degrees C) and during 6 h of exposure to 6 degrees C. Rectal temperatures were recorded before and after cold exposure. NST was estimated from the ability of isolated brown fat mitochondria to bind guanosine 5'-diphosphate (GDP). Core temperature of older sedentary rats fell 5.1 +/- 0.4 degrees C after cold exposure (36.3 +/- 0.3 vs. 31.2 +/- 0.8 degrees C). Exercise training in older animals prevented this fall from occurring (36.4 +/- 0.2 vs. 35.3 +/- 0.3 degrees C). Core temperatures of cold-exposed younger exercised and sedentary rats did not differ from thermoneutral values. Exercise did not alter the rates of resting body mass-independent (ml.min-1.kg body mass-0.67) O2 consumption in younger or older rats. However, body mass-independent and lean body mass (LBM)-independent (ml.min-1.g LBM-0.67) cold-induced O2 consumptions of older exercised rats were significantly elevated relative to those of older sedentary animals. This effect of exercise was not seen in younger rats.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document