scholarly journals ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sora Kim ◽  
Kristin L Zuromski ◽  
Tristan A Bell ◽  
Robert T Sauer ◽  
Tania A Baker

AAA+ proteases perform regulated protein degradation in all kingdoms of life and consist of a hexameric AAA+ unfoldase/translocase in complex with a self-compartmentalized peptidase. Based on asymmetric features of cryo-EM structures and a sequential hand-over-hand model of substrate translocation, recent publications have proposed that the AAA+ unfoldases ClpA and ClpX rotate with respect to their partner peptidase ClpP to allow function. Here, we test this model by covalently crosslinking ClpA to ClpP to prevent rotation. We find that crosslinked ClpAP complexes unfold, translocate, and degrade protein substrates in vitro, albeit modestly slower than uncrosslinked enzyme controls. Rotation of ClpA with respect to ClpP is therefore not required for ClpAP protease activity, although some flexibility in how the AAA+ ring docks with ClpP may be necessary for optimal function.

2020 ◽  
Author(s):  
Sora Kim ◽  
Kristin L Zuromski ◽  
Tristan A Bell ◽  
Robert T Sauer ◽  
Tania A Baker

AbstractAAA+ proteases, which perform regulated protein degradation in all kingdoms of life, consist of a hexameric AAA+ unfoldase/translocase in complex with a self-compartmentalized peptidase. Based on asymmetric features of cryo-EM structures and a sequential hand-over-hand model of substrate translocation, recent publications have proposed that the AAA+ unfoldases ClpA and ClpX must rotate with respect to their partner peptidase ClpP to allow function. Here, we test this model by covalently crosslinking ClpA to ClpP to prevent rotation. We find that crosslinked ClpAP omplexes unfold, translocate, and degrade protein substrates, albeit modestly slower han uncrosslinked enzyme controls. Rotation of ClpA with respect to ClpP therefore is ot required for ClpAP protease activity, although some flexibility in how the AAA+ ring ocks on ClpP may be necessary for optimal function.


1961 ◽  
Vol 113 (2) ◽  
pp. 359-380 ◽  
Author(s):  
Georges Ungar ◽  
Takuso Yamura ◽  
Jacqueline B. Isola ◽  
Sidney Kobrin

Protease activity was measured through the hydrolysis of synthetic amino acid esters in body fluids and tissues of guinea pigs, rats, mice, and humans. Significant in vitro activation was observed in serum and lung slices of sensitized guinea pigs on addition of the specific antigen. Increased proteolytic activity was also seen in reverse anaphylaxis. More marked activation occurred when guinea pig serum was treated with peptone and guinea pig or rat serum was treated with agar. Protease activation was demonstrated in specimens of human skin under the influence of a poison ivy extract or croton oil added in vitro. Urinary protease activity of guinea pigs increased significantly during the first hours of anaphylactic shock and very markedly in peptone shock. Peptone shock, elicited in mice pretreated with H. pertussis, was accompanied by a considerable increase in protease activity in the peritoneal fluid as compared with non-pretreated mice which were insensitive to peptone. Proteolytic activity resulting from the activation procedures was due to a number of proteases. The dominant substrate affinity and inhibition patterns suggest that serum and urine proteases are similar to but not identical with plasmin. Anaphylactic activation exhibited patterns different from those resulting from the action of anaphylactoid agents. Tissue enzymes are either of cathepsin- or chymotrypsin-type or mixtures of both. Some of the activated enzymes, although remarkably effective in hydrolyzing amino acid esters, show no activity on protein substrates. This does not justify, however, their designation as "esterases." They probably belong to the class of specific proteases acting only on a single or a small number of functionally significant protein substrates. There is at present sufficient evidence to prove not only that protease activation does occur in anaphylaxis and anaphylactoid conditions but also that it is an important component of the chain of reactions leading to the allergic response.


2015 ◽  
Vol 82 (5) ◽  
pp. 1391-1400 ◽  
Author(s):  
Francois Rineau ◽  
Jelle Stas ◽  
Nhu H. Nguyen ◽  
Thomas W. Kuyper ◽  
Robert Carleer ◽  
...  

ABSTRACTIn temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4+and NO3−) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13Suillusspecies with different ecological preferences for theirin vitroprotein degradation abilities.Suillusspecies preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability.


2000 ◽  
Vol 6 (S2) ◽  
pp. 260-261
Author(s):  
Takashi Ishikawa ◽  
Fabienne Beuron ◽  
Martin Kessel ◽  
Sue Wickner ◽  
Michael R. Maurizi ◽  
...  

ClpAP, an ATP-dependent protease of E. coli, recognizes and unfolds protein substrates via ClpA, its chaperonelike ATPase component, and digests them in ClpP, its protease component . ClpA forms hexameric rings with a two-layered structure, and stacks axially on either face of the double heptameric rings of ClpP. Protein substrates can bind to ClpAP in the presence of ATPγS, which is not hydrolyzed by ClpA, but are not degraded unless ATP is added. This property makes it possible to synchronize degradation in vitro by forming enzymesubstrate complexes in the presence of ATPγS and then adding ATP to trigger subsequent steps. We have used image averaging of electron micrographs of frozen hydrated and negatively stained specimens to characterize interactions of ClpA and ClpAP complexes with the model substrate, bacteriophage P1 protein, RepA.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii63-ii63
Author(s):  
Lakshmi Bollu ◽  
Derek Wainwright ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
...  

Abstract INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO; IDO1) is a rate-limiting enzyme that metabolizes the essential amino acid tryptophan into kynurenine. Recent work by our group has revealed that IDO promotes tumor development and suppresses immune cell functions independent of its enzyme activity. Moreover, pharmacologic IDO enzyme inhibitors that currently serve as the only class of drugs available for targeting immunosuppressive IDO activity, fail to improve the survival of patients with GBM. Here, we developed IDO-Proteolysis Targeting Chimeras (IDO-PROTACs). PROTACs bind to a specific protein and recruit an E3 ubiquitin ligase that enhance proteasome-mediated degradation of the target protein. METHODS A library of ≥100 IDO-PROTACs were developed by joining BMS986205 (IDO binder) with a linker group to various E3-ligase ligands. Western blot analysis of PROTAC-induced IDO degradation was tested in vitro among multiple human and mouse GBM cell lines including U87, GBM6, GBM43 and GL261 along a time course ranging between 1–96 hours of treatment and at varying concentrations. The mechanism of IDO protein degradation was investigated using pharmacologic ligands that inhibit or compete with the proteasome-mediated protein degradation pathway. RESULTS Primary screening identified several IDO-PROTACs with IDO protein degradation potential. Secondary screening showed that our lead compound has a DC50 value of ~0.5µM with an ability to degrade IDO in all GBM cells analyzed, and an initial activity within 12 hours of treatment that extended for up to 96 hours. Mutating the CRBN-binding ligand, pretreatment with the ubiquitin proteasome system inhibitors MG132 or MLN4924 or using unmodified parental compound all inhibited IDO protein degradation. CONCLUSIONS This study developed an initial IDO-PROTAC technology that upon further optimization, can neutralize both IDO enzyme and non-enzyme immunosuppressive effects. When combined with other forms of immunotherapy, IDO-PROTACs have the potential to substantially enhance immunotherapeutic efficacy in patients with GBM.


1980 ◽  
Vol 238 (1) ◽  
pp. E46-E52
Author(s):  
S. L. Augustine ◽  
R. W. Swick

The recovery of approximately 40% of the total liver protein during the first day after partial hepatectomy was shown to be due to the near cessation of protein breakdown rather than to an increase in protein synthesis. The decrease in degradation of total protein was less if rats were adrenalectomized or protein-depleted prior to partial hepatectomy. The effect of these treatments originally suggested that changes in free amino acid levels in liver might be related to the rate of protein degradation. However, no correlation was found between levels of total free amino acids and rates of breakdown. Measurements of individual amino acids during liver regeneration suggested that levels of free methionine and phenylalanine, amino acids that have been found to lower rates of protein degradation in vitro, are not correlated with rates of breakdown in vivo. The difference between the fractional rate of ornithine aminotransferase degradation (0.68/day and 0.28/day in sham-hepatectomized and partially hepatectomized rats, respectively) was sufficient to account for the higher level of this protein 3 days after surgery in the latter group.


1982 ◽  
Vol 65 (8) ◽  
pp. 1457-1464 ◽  
Author(s):  
J.D. Erfle ◽  
R.J. Boila ◽  
R.M. Teather ◽  
S. Mahadevan ◽  
F.D. Sauer

Parasitology ◽  
2007 ◽  
Vol 135 (1) ◽  
pp. 125-130 ◽  
Author(s):  
V. M. BOWLES ◽  
A. R. YOUNG ◽  
S. C. BARKER

SUMMARYTo investigate the biochemical components of egg-hatch in the body louse, Pediculus humanus, egg-shell-washings (ESW) were collected during the first 2 h post-hatching and analysed by gelatin SDS-PAGE. These ESW contained proteases with molecular mass in the range of 25–100 kDa; the most abundant proteases were ~25 kDa. The 3 main regions of protease activity in the one-dimensional gelatin SDS-PAGE gels resolved to at least 23 distinct regions of protease activity when analysed by two-dimensional gelatin SDS-PAGE, with iso-electric points spread over the entire 3 to 10 pH range. Mechanistic characterization indicated that the ESW contained proteases of the metallo-class, inhibited by both 1,10-phenanthroline and EDTA. Several protease inhibitors were tested for their ability to inhibit louse egg-hatch in vitro. The metalloprotease inhibitor 1,10-phenanthroline and the aminopeptidase inhibitor bestatin significantly inhibited (P<0·05) louse egg-hatch (100% and 58%, respectively). The presence of metalloproteases at the time of egg-hatch and the inhibition of egg-hatch in P. humanus by metalloprotease inhibitors suggests a crucial role for these proteases in the hatching of this medically important parasite.


2012 ◽  
Vol 60 (20) ◽  
pp. 5071-5075 ◽  
Author(s):  
Martin M. Lorenz ◽  
Christine Hayot Carbonero ◽  
Lydia Smith ◽  
Peter Udén

Sign in / Sign up

Export Citation Format

Share Document