scholarly journals Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Qijing Xie ◽  
Maria Brbic ◽  
Felix Horns ◽  
Sai Saroja Kolluru ◽  
Robert C Jones ◽  
...  

Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage—neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.

2020 ◽  
Author(s):  
Qijing Xie ◽  
Maria Brbic ◽  
Felix Horns ◽  
Sai Saroja Kolluru ◽  
Bob Jones ◽  
...  

AbstractNeurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological features. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of Drosophila olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage—neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.


2021 ◽  
Author(s):  
Natasa Todorovic ◽  
◽  
Gordana Stojadinovic ◽  
Kamal AlJamal ◽  
Miroslav Zivic

Unlike the neurons in the CNS, the peripheral neurons have certain intrinsic regenerative capacity. After injury, peripheral neurons can switch to a cellular “state for growth”, with the expression profiles similar to early developmental stages. We looked at the changes of morphometric parameters induced in young peripheral neurons with treatments that in adult neurons have growth-stimulatory effect. The experimental treatments compared to control were: BpV (phen), an inhibitor of PTEN; and bFGF, basic fibroblast growth factor. The neurite growth was measured on cultured dissociated dorsal root ganglia neonatal neurons fixed 24h after treatment and immunostained with anti-neurofilament H (NF-H) phosphorylated antibody. FIJI Simple Neurite Tracer was used for morphometry of individual neurons. 24h post treatment, compared to control, total neurite length, length of primary and length of terminal branches, were increased by bFGF but not by BpV treatment. In all measured parameters related to the degree of branching, BpV- treated neurons had small dispersion of values and small mean values, reminiscent of literature data stating that BpV treated neurons are elongated and less branched. However, the BpV did not have a positive influence on neurite elongation, as was reported on adult neurons. In contrast, bFGF stimulated elongation of young neurons in the manner similar to the effects described on the adult neurons.


2019 ◽  
Vol 117 (2) ◽  
pp. 936-942 ◽  
Author(s):  
Yuko Hattori ◽  
Masaki Tomonaga

Music and dance are universal across human culture and have an ancient history. One characteristic of music is its strong influence on movement. For example, an auditory beat induces rhythmic movement with positive emotions in humans from early developmental stages. In this study, we investigated if sound induced spontaneous rhythmic movement in chimpanzees. Three experiments showed that: 1) an auditory beat induced rhythmic swaying and other rhythmic movements, with larger responses from male chimpanzees than female chimpanzees; 2) random beat as well as regular beat induced rhythmic swaying and beat tempo affected movement periodicity in a chimpanzee in a bipedal posture; and 3) a chimpanzee showed close proximity to the sound source while hearing auditory stimuli. The finding that male chimpanzees showed a larger response to sound than female chimpanzees was consistent with previous literature about “rain dances” in the wild, where male chimpanzees engage in rhythmic displays when hearing the sound of rain starting. The fact that rhythmic swaying was induced regardless of beat regularity may be a critical difference from humans, and a further study should reveal the physiological properties of sound that induce rhythmic movements in chimpanzees. These results suggest some biological foundation for dancing existed in the common ancestor of humans and chimpanzees ∼6 million years ago. As such, this study supports the evolutionary origins of musicality.


2010 ◽  
Vol 31 (6) ◽  
pp. 353-361 ◽  
Author(s):  
Keiko Miwa ◽  
Jong-Kook Lee ◽  
Yoshiko Takagishi ◽  
Tobias Opthof ◽  
Xianming Fu ◽  
...  

Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


2017 ◽  
Vol 186 (1) ◽  
pp. 103-112
Author(s):  
Lukáš Laibl ◽  
Oldřich Fatka

This contribution briefly summarizes the history of research, modes of preservation and stratigraphic distribution of 51 trilobite and five agnostid taxa from the Barrandian area, for which the early developmental stages have been described.


2018 ◽  
Vol 17 (4) ◽  
pp. 255-260 ◽  
Author(s):  
Feng Gao ◽  
Lin-Jie Xu ◽  
Yuan Zhao ◽  
Xing-Huai Sun ◽  
Zhongfeng Wang

Background & Objective: Müller cell is the major type of glial cell in the vertebrate retina. Müller cells express various types of K+ channels, such as inwardly rectifying K+ (Kir) channels, big conductance Ca2+-activated K+ (BKCa) channels, delayed rectifier K+ channels (KDR), and transient A-type K+ channels. These K+ channels play important roles in maintaining physiological functions of Müller cells. Under some retinal pathological conditions, the changed expression and functions of K+ channels may contribute to retinal pathogenesis. Conclusion: In this article, we reviewed the physiological properties of K+ channels in retinal Müller cells and the functional changes of these channels in retinal disorders.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Bhupinder Pal ◽  
Yunshun Chen ◽  
Michael J. G. Milevskiy ◽  
François Vaillant ◽  
Lexie Prokopuk ◽  
...  

Abstract Background Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. Methods The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. Results The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. Conclusions This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.


2021 ◽  
Vol 22 (3) ◽  
pp. 1210
Author(s):  
Krzysztof Formicki ◽  
Agata Korzelecka-Orkisz ◽  
Adam Tański

The number of sources of anthropogenic magnetic and electromagnetic fields generated by various underwater facilities, industrial equipment, and transferring devices in aquatic environment is increasing. These have an effect on an array of fish life processes, but especially the early developmental stages. The magnitude of these effects depends on field strength and time of exposure and is species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis, with special reference to survival, the size of the embryos, embryonic motor function, changes in pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case of the considerable extension of sperm capability of activation, or have a negative influence in the form of a disturbance in heart rate or developmental instability in inner ear organs.


2021 ◽  
Vol 22 (4) ◽  
pp. 1854
Author(s):  
Tabinda Sidrat ◽  
Zia-Ur Rehman ◽  
Myeong-Don Joo ◽  
Kyeong-Lim Lee ◽  
Il-Keun Kong

The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document