Operating Current Dependence of CdZnSe/ZnMgSSe Laser Diodes on Band Gap and Carrier Concentration of P-Type Cladding Layer

1995 ◽  
Author(s):  
Shin'ichi Nakatsuka ◽  
Jun Gotoh ◽  
Kazuhiro Mochizuki ◽  
Akira Taike ◽  
Masahiko Kawata ◽  
...  
2020 ◽  
Vol 13 (7) ◽  
pp. 071008
Author(s):  
Tomoya Omori ◽  
Sayaka Ishizuka ◽  
Shunya Tanaka ◽  
Shinji Yasue ◽  
Kosuke Sato ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 52
Author(s):  
Asmaa Soheil Najm ◽  
Puvaneswaran Chelvanathan ◽  
Sieh Kiong Tiong ◽  
Mohammad Tanvirul Ferdaous ◽  
Seyed Ahmad Shahahmadi ◽  
...  

A CdS thin film buffer layer has been widely used as conventional n-type heterojunction partner both in established and emerging thin film photovoltaic devices. In this study, we perform numerical simulation to elucidate the influence of electrical properties of the CdS buffer layer, essentially in terms of carrier mobility and carrier concentration on the performance of SLG/Mo/p-Absorber/n-CdS/n-ZnO/Ag configured thin film photovoltaic devices, by using the Solar Cell Capacitance Simulator (SCAPS-1D). A wide range of p-type absorber layers with a band gap from 0.9 to 1.7 eV and electron affinity from 3.7 to 4.7 eV have been considered in this simulation study. For an ideal absorber layer (no defect), the carrier mobility and carrier concentration of CdS buffer layer do not significantly alter the maximum attainable efficiency. Generally, it was revealed that for an absorber layer with a conduction band offset (CBO) that is more than 0.3 eV, Jsc is strongly dependent on the carrier mobility and carrier concentration of the CdS buffer layer, whereas Voc is predominantly dependent on the back contact barrier height. However, as the bulk defect density of the absorber layer is increased from 1014 to 1018 cm−3, a CdS buffer layer with higher carrier mobility and carrier concentration is an imperative requirement to a yield device with higher conversion efficiency and a larger band gap-CBO window for realization of a functional device. Most tellingly, simulation outcomes from this study reveal that electrical properties of the CdS buffer layer play a decisive role in determining the progress of emerging p-type photo-absorber layer materials, particularly during the embryonic device development stage.


1996 ◽  
Vol 35 (Part 1, No. 2B) ◽  
pp. 1431-1435 ◽  
Author(s):  
Shin'ichi Nakatsuka ◽  
Jun Gotoh ◽  
Kazuhiro Mochizuki ◽  
Akira Taike ◽  
Masahiko Kawata ◽  
...  

2018 ◽  
Vol 31 (3) ◽  
pp. 20
Author(s):  
Sarmad M. M. Ali ◽  
Alia A.A. Shehab ◽  
Samir A. Maki

In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hall effect measurements of ZnTe , ZnTe:Cu films show that all films were (p-type), the carrier concentration (1.1×1020 m-3) , Hall mobility (0.464m2/V.s) for pure ZnTe film, increases the carrier concentration (6.3×1021m-3) Hall mobility (2m2/V.s) for doping (Cu at 3%) film, but  decreases by increasing Cu concentration.


2021 ◽  
Vol 125 (13) ◽  
pp. 7495-7501
Author(s):  
Gang Wang ◽  
Jinju Zheng ◽  
Boyi Xu ◽  
Chaonan Zhang ◽  
Yue Zhu ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 988
Author(s):  
Chrysa Aivalioti ◽  
Alexandros Papadakis ◽  
Emmanouil Manidakis ◽  
Maria Kayambaki ◽  
Maria Androulidaki ◽  
...  

Nickel oxide (NiO) is a p-type oxide and nitrogen is one of the dopants used for modifying its properties. Until now, nitrogen-doped NiO has shown inferior optical and electrical properties than those of pure NiO. In this work, we present nitrogen-doped NiO (NiO:N) thin films with enhanced properties compared to those of the undoped NiO thin film. The NiO:N films were grown at room temperature by sputtering using a plasma containing 50% Ar and 50% (O2 + N2) gases. The undoped NiO film was oxygen-rich, single-phase cubic NiO, having a transmittance of less than 20%. Upon doping with nitrogen, the films became more transparent (around 65%), had a wide direct band gap (up to 3.67 eV) and showed clear evidence of indirect band gap, 2.50–2.72 eV, depending on %(O2-N2) in plasma. The changes in the properties of the films such as structural disorder, energy band gap, Urbach states and resistivity were correlated with the incorporation of nitrogen in their structure. The optimum NiO:N film was used to form a diode with spin-coated, mesoporous on top of a compact, TiO2 film. The hybrid NiO:N/TiO2 heterojunction was transparent showing good output characteristics, as deduced using both I-V and Cheung’s methods, which were further improved upon thermal treatment. Transparent NiO:N films can be realized for all-oxide flexible optoelectronic devices.


2011 ◽  
Vol 5 (4) ◽  
pp. 153-155 ◽  
Author(s):  
Seiji Yamazoe ◽  
Shunsuke Yanagimoto ◽  
Takahiro Wada
Keyword(s):  
Band Gap ◽  

2001 ◽  
Vol 692 ◽  
Author(s):  
J. Zhao ◽  
X. D. Zhang ◽  
Z. C. Feng ◽  
J. C. Deng ◽  
P. Jin ◽  
...  

AbstractInGaAsP/InP multiple quantum wells have been prepared by Impurity-Free Vacancy Disordering (IFVD). The luminescent characteristics was investigated using photoluminescence (PL) and photoreflectance (PR), from which the band gap blue shift was observed. Si3N4, SiO2 and SOG were used for the dielectric layer to create the vacancies. All samples were annealed by rapid thermal anne aling (RTA). The results indicate that the band gap blue shift varies with the dielectric layers and annealing temperature. The SiO2 capping was successfully used with an InGaAs cladding layer to cause larger band tuning effect in the InGaAs/InP MQWs than the Si3N4 capping with an InGaAs cladding layer. On the other hand, samples with the Si3N4-InP cap layer combination also show larger energy shifts than that with SiO2-InP cap layer combination.


2002 ◽  
Vol 41 (Part 1, No. 4B) ◽  
pp. 2559-2562 ◽  
Author(s):  
Ryoji Hiroyama ◽  
Daijiro Inoue ◽  
Yasuhiko Nomura ◽  
Yasuhiro Ueda ◽  
Masayuki Shono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document