scholarly journals A new caimanine alligatorid from the Middle Eocene of Southwest Texas and implications for spatial and temporal shifts in Paleogene crocodyliform diversity

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10665
Author(s):  
Michelle R. Stocker ◽  
Christopher A. Brochu ◽  
E. Christopher Kirk

Dramatic early Cenozoic climatic shifts resulted in faunal reorganization on a global scale. Among vertebrates, multiple groups of mammals (e.g., adapiform and omomyiform primates, mesonychids, taeniodonts, dichobunid artiodactyls) are well known from the Western Interior of North America in the warm, greenhouse conditions of the early Eocene, but a dramatic drop in the diversity of these groups, along with the introduction of more dry-tolerant taxa, occurred near the Eocene–Oligocene boundary. Crocodyliforms underwent a striking loss of diversity at this time as well. Pre-Uintan crocodyliform assemblages in the central Western Interior are characterized by multiple taxa, whereas Chadronian assemblages are depauperate with only Alligator prenasalis previously known. Crocodyliform diversity through the intervening Uintan and Duchesnean is not well understood. The middle Eocene Devil’s Graveyard Formation (DGF) of southwest Texas provides new data from southern latitudes during that crucial period. A new specimen from the middle member of the DGF (late Uintan–Duchesnean) is the most complete cranial material of an alligatorid known from Paleogene deposits outside the Western Interior. We identify this specimen as a caimanine based on notched descending laminae of the pterygoids posterior to the choanae and long descending processes of the exoccipitals that are in contact with the basioccipital tubera. Unlike Eocaiman cavernensis, the anterior palatine process is rounded rather than quadrangular. The relationships and age of this new taxon support the hypothesis that the modern distribution of caimanines represents a contraction of a more expansive early Cenozoic distribution. We hypothesize that the range of caimanines tracked shifting warm, humid climatic conditions that contracted latitudinally toward the hothouse-icehouse transition later in the Eocene.

1992 ◽  
Vol 66 (6) ◽  
pp. 943-957 ◽  
Author(s):  
Rodney M. Feldmann

Six extant and nine fossil species of the raninidLyreidusde Haan, includingLyreidus(Lyreidus)lebuensisn. sp. andLyreidus(Lysirude)hookerin. sp., are recognized. Based on morphology of the anterolateral margin and sternum, the species are referred to two subgenera,Lyreidus(Lyreidus) andLyreidus(Lysirude). The genus first appears in shallow-water, high-latitude, southern hemisphere localities in New Zealand, Antarctica, and Chile in the early Eocene. Subsequently, the nominate subgenus is confined to the southern hemisphere until the Neogene when it dispersed into the Indo-West Pacific region.Lyreidus(Lysirude) is documented by early and middle Eocene occurrences in Antarctica and New Zealand; however, all subsequent occurrences, fossil and recent, are in the northern hemisphere. The disjunct modern distribution within the genus is confined to this subfamily; species are known from the western North Atlantic and the Indo-West Pacific.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Olivier Chavasseau ◽  
Yaowalak Chaimanee ◽  
Stéphane Ducrocq ◽  
Vincent Lazzari ◽  
Phan Dong Pha ◽  
...  

AbstractSivaladapidae is a poorly known Asian strepsirrhine family originally discovered in Miocene sediments of the Indian subcontinent. Subsequent research has considerably increased the diversity, temporal range, and geographical distribution of this group, now documented from China, Thailand, Myanmar, Pakistan, and India and whose earliest representatives date back to the Middle Eocene. We present here a new taxon of sivaladapid from the Na Duong coal mine in the Latest Middle Eocene-Late Eocene of Vietnam. It represents the first Eocene primate from Vietnam and the first medium-sized mammal recovered from this locality, thus documenting a completely new part of the Na Duong paleobiodiversity. This taxon is the largest sivaladapid ever found with an estimated body weight of 5.3 kg and it represents a new subfamily of sivaladapids in exhibiting a very peculiar combination of dental features yet unknown in the fossil record of the family (e.g., retention of four premolars, high-crowned molars with accentuated bunodonty and extreme crest reduction). Besides documenting a complete new part of sivaladapid evolution, its primitive dental formula and derived features shared with the Early Eocene Asiadapidae reinforce the hypothesis of a basal branching of sivaladapids among strepsirrhines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Federico J. Degrange ◽  
Diego Pol ◽  
Pablo Puerta ◽  
Peter Wilf

AbstractHere we present the first record of a stem-Coracii outside the Holarctic region, found in the early Eocene of Patagonia at the Laguna del Hunco locality. Ueekenkcoracias tambussiae gen. et sp. nov. consists of an incomplete right hind limb that presents the following combination of characters, characteristic of Coracii: relatively short and stout tibiotarsus, poorly developed crista cnemialis cranialis, short and wide tarsometatarsus, with the tuberositas m. tibialis cranialis located medially on the shaft, and curved and stout ungual phalanges. Although the presence of a rounded and conspicuous foramen vasculare distale and the trochlea metatarsi II strongly deflected medially resemble Primobucconidae, a fossil group only found in the Eocene of Europe and North America, our phylogenetic analysis indicates the new taxon is the basalmost known Coracii. The unexpected presence of a stem-Coracii in the Eocene of South America indicates that this clade had a more widespread distribution than previously hypothesized, already extending into the Southern Hemisphere by the early Eocene. Ueekenkcoracias tambussiae represents new evidence of the increasing diversity of stem lineages of birds in the Eocene. The new material provides novel morphological data for understanding the evolutionary origin and radiation of rollers and important data for estimates of the divergence time of the group.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jussi Hovikoski ◽  
Michael B. W. Fyhn ◽  
Henrik Nøhr-Hansen ◽  
John R. Hopper ◽  
Steven Andrews ◽  
...  

AbstractThe paleoenvironmental and paleogeographic development of the Norwegian–Greenland seaway remains poorly understood, despite its importance for the oceanographic and climatic conditions of the Paleocene–Eocene greenhouse world. Here we present analyses of the sedimentological and paleontological characteristics of Paleocene–Eocene deposits (between 63 and 47 million years old) in northeast Greenland, and investigate key unconformities and volcanic facies observed through seismic reflection imaging in offshore basins. We identify Paleocene–Eocene uplift that culminated in widespread regression, volcanism, and subaerial exposure during the Ypresian. We reconstruct the paleogeography of the northeast Atlantic–Arctic region and propose that this uplift led to fragmentation of the Norwegian–Greenland seaway during this period. We suggest that the seaway became severely restricted between about 56 and 53 million years ago, effectively isolating the Arctic from the Atlantic ocean during the Paleocene–Eocene thermal maximum and the early Eocene.


2016 ◽  
Vol 53 (6) ◽  
pp. 591-604 ◽  
Author(s):  
Cale A.C. Gushulak ◽  
Christopher K. West ◽  
David R. Greenwood

Early Eocene fossil floras from British Columbia are a rich resource for reconstructing western North American early Cenozoic climate. The best known of these floras reflect cooler (MAT ≤ 15 °C) upland forest communities in contrast to coeval (MAT ≥ 18 °C) forests in lowland western North American sites. Of particular interest is whether Early Eocene climates were monsoonal (highly seasonal precipitation). The McAbee site is a 52.9 ± 0.83 Ma 0.5 km outcrop of bedded lacustrine shale interbedded with volcanic ash. In this report two historical megaflora collections that were collected independently from different stratigraphic levels and (or) laterally separated by ∼100–200 m in the 1980s (University of Saskatchewan) and 2000s (Brandon University) are investigated to (i) assess whether they represent the same leaf population, (ii) assess whether a combined collection yields more precise climate estimates, and (iii) reconstruct paleoclimate to assess the character of regional Early Eocene precipitation seasonality. Combined, the two samples yielded 43 dicot leaf morphotypes. Analysis of leaf size distribution using ANOVA showed no difference between the two samples, and thus they were combined for climate analysis. Climate analysis using leaf physiognomy agrees with previous estimates for McAbee and other regional megafloras, indicating a warm (MAT ∼8–13 °C), mild (CMMT ∼5 °C), moist (MAP > 100 cm/year) ever-wet, non-monsoonal climate. Additionally, we recommend that climate analyses derived from leaf fossils should be based on samples collected within a stratigraphically constrained quarry area to capture a snapshot of climate in time rather than time-averaged estimates derived from multiple quarry sites representing different stratigraphic levels within a fossil site.


2021 ◽  
Author(s):  
Goran Andjic ◽  
Renjie Zhou ◽  
Tara N. Jonell ◽  
Jonathan C. Aitchison

<p>Pre-early Eocene volcaniclastic rocks exposed in the Indus Suture Zone (Ladakh, India) are key to deciphering the complex magmatic and tectonic evolution of the convergent margins that existed between India and Eurasia. Several hypotheses exist regarding the provenance of the middle Cretaceous to early Cenozoic Jurutze and Nindam formations yet there is presently no consensus. Leading models propose that: (a) they were either formed in neighbouring sub-basins at one convergent margin consisting of the Kohistan-Ladakh-Dras arc; or (b) they became stratigraphically superposed after the collision between the Kohistan-Ladakh and Dras arcs. Here we present new U-Pb detrital zircon, major and trace element geochemical, and petrographic datasets from the Nindam and Jurutze formations that support a disparate provenance and thus necessitate an alternative model. The Jurutze Fm. has a geochemical composition typical of arcs built on continental crust, whereas the Nindam Fm. presents a geochemical signature compatible with that of an intraoceanic arc. The significant age gap between these formations (>20 m.y.) in the Zanskar Gorge further precludes the possibility that the Jurutze Fm. was deposited on top of the Nindam Fm. We propose that the Nindam and Jurutze formations were deposited in distinct forearc basins and explore scenarios for their formation at separate convergent margins, i.e. the separate Kohistan-Ladakh and Dras arcs, respectively.</p>


1997 ◽  
Vol 34 (10) ◽  
pp. 1366-1378 ◽  
Author(s):  
Paul B. O'Sullivan ◽  
Larry S. Lane

Apatite fission-track data from 16 sedimentary and crystalline rock samples indicate rapid regional Early Eocene denudation within the onshore Beaufort–Mackenzie region of northwestern Canada. Rocks exposed in the area of the Big Fish River, Northwest Territories, cooled rapidly from paleotemperatures of >80–110 °C to <6 0°C at ca. 56 ± 2 Ma, probably in response to kilometre-scale denudation associated with regional structuring. The data suggest the region experienced a geothermal gradient of ~28 °C/km prior to rapid cooling, with ~2.7 km of section having been removed from the top of the exposed section in the Moose Channel Formation and ~3.8 km from the top of the exposed Cuesta Creek Member. Farther to the west, rocks exposed in the headwaters of the Blow River in the Barn Mountains, Yukon Territories, were exposed to paleotemperatures above 110 °C in the Late Paleocene prior to rapid cooling from these elevated paleotemperatures due to kilometre-scale denudation at ca. 56 ± 2 Ma. Exposure of these samples at the surface today requires that a minimum of ~3.8 km of denudation occurred since they began cooling below ~110 °C. The apatite analyses indicate that rocks exposed in the northern Yukon and Northwest Territories experienced rapid cooling during the Early Eocene in response to kilometre-scale denudation, associated with early Tertiary folding and thrusting in the northern Cordillera. Early Eocene cooling–uplift ages for onshore sections are slightly older than the Middle Eocene ages previously documented for the adjacent offshore foldbelt and suggest that the deformation progressed toward the foreland of the foldbelt through time.


2020 ◽  
Author(s):  
E Sebastián-González ◽  
JM Barbosa ◽  
JM Pérez-García ◽  
Z Morales-Reyes ◽  
F Botella ◽  
...  

© 2019 John Wiley & Sons Ltd Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large-scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion-consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species-poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human-impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As species-rich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human-dominated landscapes in the Anthropocene.


2021 ◽  
Vol 17 (6) ◽  
pp. 2393-2425
Author(s):  
Peter K. Bijl ◽  
Joost Frieling ◽  
Margot J. Cramwinckel ◽  
Christine Boschman ◽  
Appy Sluijs ◽  
...  

Abstract. Sea surface temperature (SST) reconstructions based on isoprenoid glycerol dialkyl glycerol tetraether (isoGDGT) distributions from the Eocene southwest (SW) Pacific Ocean are unequivocally warmer than can be reconciled with state-of-the-art fully coupled climate models. However, the SST signal preserved in sedimentary archives can be affected by contributions of additional isoGDGT sources. Methods now exist to identify and possibly correct for overprinting effects on the isoGDGT distribution in marine sediments. Here, we use the current proxy insights to (re-)assess the reliability of the isoGDGT-based SST signal in 69 newly analyzed and 242 reanalyzed sediments at Ocean Drilling Program (ODP) Site 1172 (East Tasman Plateau, Australia) following state-of-the-art chromatographic techniques. We compare our results with paleoenvironmental and paleoclimatologic reconstructions based on dinoflagellate cysts. The resulting ∼ 130 kyr resolution Maastrichtian–Oligocene SST record based on the TetraEther indeX of tetraethers with 86 carbon atoms (TEX86) confirms previous conclusions of anomalous warmth in the early Eocene SW Pacific and remarkably cool conditions during the mid-Paleocene. Dinocyst diversity and assemblages show a strong response to the local SST evolution, supporting the robustness of the TEX86 record. Soil-derived branched GDGTs stored in the same sediments are used to reconstruct mean annual air temperature (MAAT) of the nearby land using the Methylation index of Branched Tetraethers with 5-methyl bonds (MBT'5me) proxy. MAAT is consistently lower than SST during the early Eocene, independent of the calibration chosen. General trends in SST and MAAT are similar, except for (1) an enigmatic absence of MAAT rise during the Paleocene–Eocene Thermal Maximum and Middle Eocene Climatic Optimum, and (2) a subdued middle–late Eocene MAAT cooling relative to SST. Both dinocysts and GDGT signals suggest a mid-shelf depositional environment with strong river runoff during the Paleocene–early Eocene progressively becoming more marine thereafter. This trend reflects gradual subsidence and more pronounced wet/dry seasons in the northward-drifting Australian hinterland, which may also explain the subdued middle Eocene MAAT cooling relative to that of SST. The overall correlation between dinocyst assemblages, marine biodiversity and SST changes suggests that temperature exerted a strong influence on the surface-water ecosystem. Finally, we find support for a potential temperature control on compositional changes of branched glycerol monoalkyl glycerol tetraethers (brGMGTs) in marine sediments. It is encouraging that a critical evaluation of the GDGT signals confirms that most of the generated data are reliable. However, this also implies that the high TEX86-based SSTs for the Eocene SW Pacific and the systematic offset between absolute TEX86-based SST and MBT'5me-based MAAT estimates remain without definitive explanation.


Sign in / Sign up

Export Citation Format

Share Document