scholarly journals Two predicted models based on ceRNAs and immune cells in lung adenocarcinoma

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11029
Author(s):  
Miaomiao Zhang ◽  
Peiyan Zheng ◽  
Yuan Wang ◽  
Baoqing Sun

Background It is well accepted that both competitive endogenous RNAs (ceRNAs) and immune microenvironment exert crucial roles in the tumor prognosis. The present study aimed to find prognostic ceRNAs and immune cells in lung adenocarcinoma (LUAD). Materials and Methods More specifically, we explored the associations of crucial ceRNAs with the immune microenvironment. The Cancer Genome Atlas (TCGA) database was employed to obtain expression profiles of ceRNAs and clinical data. CIBERSORT was utilized to quantify the proportion of 22 immune cells in LUAD. Results We constructed two cox regression models based on crucial ceRNAs and immune cells to predict prognosis in LUAD. Subsequently, seven ceRNAs and seven immune cells were involved in prognostic models. We validated both predicted models via an independent cohort GSE72094. Interestingly, both predicted models proved that the longer patients were smoking, the higher risk scores would be obtained. We further investigated the relationships between seven genes and immune/stromal scores via the ESTIMATE algorithm. The results indicated that CDC14A and H1F0 expression were significantly related to stromal scores/immune scores in LUAD. Moreover, based on the result of the ceRNA model, single-sample gene set enrichment analysis (ssGSEA) suggested that differences in immune status were evident between high- and low-risk groups.

2021 ◽  
Vol 8 ◽  
Author(s):  
Li Zhang ◽  
Xianzhe Tang ◽  
Jia Wan ◽  
Xianghong Zhang ◽  
Tao Zheng ◽  
...  

Background: N6-methylandenosine-related long non-coding RNAs (m6A-related lncRNAs) are critically involved in cancer development. However, the roles and clinical significance of m6A-related lncRNAs in soft tissue sarcomas (STS) are inconclusive, thereby warranting further investigations.Methods: Transcriptome profiling data were extracted from The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx). Consensus clustering was employed to divide patients into clusters and Kaplan–Meier analysis was used to explore the prognostic differences between the subgroups. Gene set enrichment analysis (GSEA) was conducted to identify the biological processes and signaling pathways associated with m6A-Related lncRNAs. Finally, patients were randomly divided into training and validation cohorts, and least absolute shrinkage and selection operator (LASSO) Cox regression was conducted to establish the m6A-related lncRNA-based risk signature.Results: A total of 259 STS patients from TCGA-SARC dataset were enrolled in our study. Thirteen m6A-Related lncRNAs were identified to be closely related to the prognosis of STS patients. Patients were divided into two clusters, and patients in cluster 2 had a better overall survival (OS) than those in cluster 1. Patients in different clusters also showed differences in immune scores, infiltrating immune cells, and immune checkpoint expression. Patients were further classified into high-risk and low-risk subgroups according to risk scores, and high-risk patients were found to have a worse prognosis. The receiver operating characteristic (ROC) curve indicated that the risk signature displayed excellent performance at predicting the prognosis of patients with STS. Further, the risk signature was remarkably connected with the immune microenvironment and chemosensitivity in STS.Conclusion: Our study demonstrated that m6A-related lncRNAs were significantly associated with prognosis and tumor immune microenvironment and could function as independent prognosis-specific predictors in STS, thereby providing novel insights into the roles of m6A-related lncRNAs in STS.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yanyan Li ◽  
Liping Tao ◽  
Weiyang Cai

Lung tissue is abundant with immune cells that form a powerful first defense against exotic particles and microbes. The malignant phenotype of lung adenocarcinoma (LUAD) is defined not only by intrinsic tumor cells but also by tumor-infiltrating immune cells (TIICs) recruited to the immune microenvironment. Understanding more about the immune microenvironment of LUAD could function in sorting out patients more likely with high risk and benefit from immunotherapy. Twenty-two types of TIICs were estimated based on large public LUAD cohorts from the TCGA and GEO datasets using the CIBERSORT algorithm. Then principal component analysis (PCA), meta-analysis, and single-sample gene set enrichment analysis (ssGSEA) were used to measure and evaluate the specific immune responses and relative mechanisms. Moreover, an immunoscore model based on the percent of immune cells was constructed via the univariate and multivariate Cox regression models, which provided an in-depth overview of the LUAD immune microenvironment and shed light on the immune regulatory mechanism. The differential expression genes (DEGs) were acquired based on the immunoscore model, and prognostic immune-related genes were further identified. GSEA and the protein–protein interaction network (PPI) further revealed that these genes were mostly enriched in many immune-related biological processes. It is hoped that this immune landscape could provide a more accurate understanding for LUAD development and tumor immune therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lei Zhu ◽  
Fugui Yang ◽  
Lingwei Wang ◽  
Lin Dong ◽  
Zhiyuan Huang ◽  
...  

Abstract Background Ferroptosis is a recently recognized non-apoptotic cell death that is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in esophageal adenocarcinoma (EAC) remains unclear. This study aims to explore the ferroptosis-related genes (FRG) expression profiles and their prognostic values in EAC. Methods The FRG data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate cox regressions were used to identify the prognostic FRG, and the predictive ROC model was established using the independent risk factors. GO and KEGG enrichment analyses were performed to investigate the bioinformatics functions of significantly different genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and TIMER database. Finally, SDG were verified in clinical EAC specimens and normal esophageal mucosal tissues. Results Twenty-eight significantly different FRG were screened from 78 EAC and 9 normal tissues. Enrichment analyses showed these SDG were mainly related to the iron-related pathways and metabolisms of ferroptosis. Gene network demonstrated the TP53, G6PD, NFE2L2 and PTGS2 were the hub genes in the biology of ferroptosis. Cox regression analyses demonstrated four FRG (CARS1, GCLM, GLS2 and EMC2) had prognostic values for overall survival (OS) (all P < 0.05). ROC curve showed better predictive ability using the risk score (AUC = 0.744). Immune cell enrichment analysis demonstrated that the types of immune cells and their expression levels in the high-risk group were significant different with those in the low-risk group (all P < 0.05). The experimental results confirmed the ALOX5, NOX1 were upregulated and the MT1G was downregulated in the EAC tissues compared with the normal esophageal mucosal tissues (all P < 0.05). Conclusions We identified differently expressed ferroptosis-related genes that may involve in EAC. These genes have significant values in predicting the patients’ OS and targeting ferroptosis may be an alternative for therapy. Further studies are necessary to verify these results of our study.


2020 ◽  
Author(s):  
Lei Zhu ◽  
Fugui Yang ◽  
Lingwei Wang ◽  
Lin Dong ◽  
Zhiyuan Huang ◽  
...  

Abstract Background Ferroptosis is a recently recognized non-apoptotic cell death that is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in esophageal adenocarcinoma (EAC) remains unclear. The aim of this study was to explore the ferroptosis-related genes (FRG) expression profiles and their prognostic values in EAC.Methods The FRG data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate cox regressions were used to identify the prognostic FRG, and the predictive ROC model was established using the independent risk factors. GO and KEGG enrichment analyses were performed to investigate the bioinformatics functions of significantly different genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA). Finally, significantly different genes were verified in our clinical EAC specimens and normal esophageal mucosal tissues.Results: Twenty-eight significantly different FRG were screened from 78 EAC and 9 normal tissues. GO and KEGG enrichments showed these SDG were mainly related to the iron-related pathways and metabolisms of ferroptosis. Gene network demonstrated the TP53, G6PD, NFE2L2 and PTGS2 were the hub genes in the biology of ferroptosis. Cox regression analyses demonstrated four FRG (CARS1, GCLM, GLS2 and EMC2) had prognostic values for overall survival (OS) (all P<0.001). ROC curves showed better efficacy to predict survival using the risk score (AUC=0.744). Immune cell enrichment analysis demonstrated that the types of immune cells and their expression levels in the high-risk group were significant different with those in the low-risk group (all P<0.05). The experimental results confirmed the ALOX5, NOX1 were upregulated and the MT1G was downregulated in the EAC tissues compared with the normal esophageal mucosal tissues (all P<0.05).Conclusions: We identified differently expressed ferroptosis-related genes that may involve in the process in EAC. These genes have significant values in predicting the patients’ OS and targeting ferroptosis may be an alternative for therapy. Further studies are necessary to verify these results of our study.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10008
Author(s):  
Zhenyu Zhao ◽  
Boxue He ◽  
Qidong Cai ◽  
Pengfei Zhang ◽  
Xiong Peng ◽  
...  

Background The highest rate of cancer-related deaths worldwide is from lung adenocarcinoma (LUAD) annually. Metabolism was associated with tumorigenesis and cancer development. Metabolic-related genes may be important biomarkers and metabolic therapeutic targets for LUAD. Materials and Methods In this study, the gleaned cohort included LUAD RNA-SEQ data from the Cancer Genome Atlas (TCGA) and corresponding clinical data (n = 445). The training cohort was utilized to model construction, and data from the Gene Expression Omnibus (GEO, GSE30219 cohort, n = 83; GEO, GSE72094, n = 393) were regarded as a testing cohort and utilized for validation. First, we used a lasso-penalized Cox regression analysis to build a new metabolic-related signature for predicting the prognosis of LUAD patients. Next, we verified the metabolic gene model by survival analysis, C-index, receiver operating characteristic (ROC) analysis. Univariate and multivariate Cox regression analyses were utilized to verify the gene signature as an independent prognostic factor. Finally, we constructed a nomogram and performed gene set enrichment analysis to facilitate subsequent clinical applications and molecular mechanism analysis. Result Patients with higher risk scores showed significantly associated with poorer survival. We also verified the signature can work as an independent prognostic factor for LUAD survival. The nomogram showed better clinical application performance for LUAD patient prognostic prediction. Finally, KEGG and GO pathways enrichment analyses suggested several especially enriched pathways, which may be helpful for us investigative the underlying mechanisms.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Sihan Chen ◽  
Guodong Cao ◽  
Wei Wu ◽  
Yida Lu ◽  
Xiaobo He ◽  
...  

Abstract Colon adenocarcinoma (COAD) is a malignant gastrointestinal tumor, often occurring in the left colon, which is regulated by glycolysis-related processes. In past studies, multiple genes that influence the prognosis for survival have been discovered through bioinformatics analysis. However, the prediction of disease prognosis using a single gene is not an accurate method. In the present study, a mechanistic model was established to achieve better prediction for the prognosis of COAD. COAD-related data downloaded from The Cancer Genome Atlas (TCGA) were correlated with the glycolysis process using gene set enrichment analysis (GSEA) to determine the glycolysis-related genes that regulate COAD. Using COX regression analysis, glycolysis-related genes associated with the prognosis of COAD were identified, and the genes screened to establish a predictive model. The risk scores of this model were correlated with relevant clinical data to obtain a connection diagram between the model and survival rate, tumor characteristic data, etc. Finally, genes in the model were correlated with cells in the tumor microenvironment, finding that they affected specific immune cells in the model. Seven genes related to glycolysis were identified (PPARGC1A, DLAT, 6PC2, P4HA1, STC2, ANKZF1, and GPC1), which affect the prognosis of patients with COAD and constitute the model for prediction of survival of COAD patients.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Jin Zhou ◽  
Zheming Liu ◽  
Huibo Zhang ◽  
Tianyu Lei ◽  
Jiahui Liu ◽  
...  

Purpose. Recent researches showed the vital role of BACH1 in promoting the metastasis of lung cancer. We aimed to explore the value of BACH1 in predicting the overall survival (OS) of early-stage (stages I-II) lung adenocarcinoma. Patients and Methods. Lung adenocarcinoma cases were screened from the Cancer Genome Atlas (TCGA) database. Functional enrichment analysis was performed to obtain the biological mechanisms of BACH1. Gene set enrichment analysis (GSEA) was performed to identify the difference of biological pathways between high- and low-BACH1 groups. Univariate and multivariate COX regression analysis had been used to screen prognostic factors, which were used to establish the BACH1 expression-based prognostic model in the TCGA dataset. The C-index and time-dependent AUC curve were used to evaluate predictive power of the model. External validation of prognostic value was performed in two independent datasets from Gene Expression Omnibus (GEO). Decision analysis curve was finally used to evaluate clinical usefulness of the BACH1-based model beyond pathologic stage alone. Results. BACH1 was an independent prognostic factor for lung adenocarcinoma. High-expression BACH1 cases had worse OS. BACH1-based prognostic model showed an ideal C-index and t -AUC and validated by two GEO datasets, independently. More importantly, the BACH1-based model indicated positive clinical applicability by DCA curves. Conclusion. Our research confirmed that BACH1 was an important predictor of prognosis in early-stage lung adenocarcinoma. The higher the expression of BACH1, the worse OS of the patients.


2020 ◽  
Author(s):  
junbai fan ◽  
Dan Wu ◽  
Yi Ding

Abstract Background: Esophageal carcinoma (ESCA) is a malignant tumor with high invasiveness and mortality. Autophagy has multiple roles in the development of cancer; however, there are limited data on autophagy genes associated with long non-coding RNAs (lncRNAs) in ESCA. The purpose of this study was to screen potential diagnostic and prognostic molecules, and to identify gene co-expression networks associated with autophagy in ESCA. Methods: We downloaded transcriptome expression profiles from The Cancer Genome Atlas and autophagy-related gene data from the Human Autophagy Database, and analyzed the co-expression of mRNAs and lncRNAs. In addition, the diagnostic and prognostic value of autophagy-related lncRNAs was analyzed by multivariate Cox regression. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was carried out for high-risk patients, and enriched pathways were analyzed by gene set enrichment analysis. Results: The results showed that genes of high-risk patients were enriched in protein export and spliceosome. Based on Cox stepwise regression and survival analysis, we identified seven autophagy-related lncRNAs with prognostic and diagnostic value, with the potential to be used as a combination to predict the prognosis of patients with ESCA. Finally, a co-expression network related to autophagy was constructed. Conclusion: These results suggest that autophagy-related lncRNAs and the spliceosome play important parts in the pathogenesis of ESCA. Our findings provide new insight into the molecular mechanism of ESCA and suggest a new method for improving its treatment.


Author(s):  
Dan Wu ◽  
Yi Ding ◽  
JunBai Fan

Background: Esophageal carcinoma (ESCA) is a malignant tumor with high invasiveness and mortality. Autophagy has multiple roles in the development of cancer; however, there are limited data on autophagy genes associated with long non-coding RNAs (lncRNAs) in ESCA. The purpose of this study was to screen potential diagnostic and prognostic molecules and to identify gene co-expression networks associated with autophagy in ESCA. Methods: We downloaded transcriptome expression profiles from The Cancer Genome Atlas and autophagy-related gene data from the Human Autophagy Database and analyzed the co-expression of mRNAs and lncRNAs. In addition, the diagnostic and prognostic value of autophagy-related lncRNAs was analyzed by multivariate Cox regression. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was carried out for high-risk patients, and enriched pathways were analyzed by gene set enrichment analysis. Results: The results showed that genes of high-risk patients were enriched in protein export and spliceosome. Based on Cox stepwise regression and survival analysis, we identified seven autophagy-related lncRNAs with prognostic and diagnostic value, with the potential to be used as a combination to predict the prognosis of patients with ESCA. Finally, a co-expression network related to autophagy was constructed. Conclusion: These results suggest that autophagy-related lncRNAs and the spliceosome play important parts in the pathogenesis of ESCA. Our findings provide new insight into the molecular mechanism of ESCA and suggest a new method for improving its treatment.


2020 ◽  
Vol 11 ◽  
Author(s):  
Zaisheng Ye ◽  
Miao Zheng ◽  
Yi Zeng ◽  
Shenghong Wei ◽  
Yi Wang ◽  
...  

Cancer stem cells (CSCs), characterized by infinite proliferation and self-renewal, greatly challenge tumor therapy. Research into their plasticity, dynamic instability, and immune microenvironment interactions may help overcome this obstacle. Data on the stemness indices (mRNAsi), gene mutations, copy number variations (CNV), tumor mutation burden (TMB), and corresponding clinical characteristics were obtained from The Cancer Genome Atlas (TCGA) and UCSC Xena Browser. Tumor purity and infiltrating immune cells in stomach adenocarcinoma (STAD) tissues were predicted using the ESTIMATE R package and CIBERSORT method, respectively. Differentially expressed genes (DEGs) between the high and low mRNAsi groups were used to construct prognostic models with weighted gene co-expression network analysis (WGCNA) and Lasso regression. The association between cancer stemness, gene mutations, and immune responses was evaluated in STAD. A total of 6,739 DEGs were identified between the high and low mRNAsi groups. DEGs in the brown (containing 19 genes) and blue (containing 209 genes) co-expression modules were used to perform survival analysis based on Cox regression. A nine-gene signature prognostic model (ARHGEF38-IT1, CCDC15, CPZ, DNASE1L2, NUDT10, PASK, PLCL1, PRR5-ARHGAP8, and SYCE2) was constructed from 178 survival-related DEGs that were significantly related to overall survival, clinical characteristics, tumor microenvironment immune cells, TMB, and cancer-related pathways in STAD. Gene correlation was significant across the prognostic model, CNVs, and drug sensitivity. Our findings provide a prognostic model and highlight potential mechanisms and associated factors (immune microenvironment and mutation status) useful for targeting CSCs.


Sign in / Sign up

Export Citation Format

Share Document