scholarly journals Genome-wide analysis of BBX gene family in Tartary buckwheat (Fagopyrum tataricum)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11939
Author(s):  
Jiali Zhao ◽  
Hongyou Li ◽  
Juan Huang ◽  
Taoxiong Shi ◽  
Ziye Meng ◽  
...  

BBX (B-box), a zinc finger transcription factor with one or two B-box domains, plays an important role in plant photomorphogenesis, growth, and development as well as response to environmental changes. In this study, 28 Tartary buckwheat BBX (FtBBX) genes were identified and screened using a comparison program. Their physicochemical properties, gene structures, conserved motifs, distribution in chromosomal, and phylogeny of the coding proteins, as well as their expression patterns, were analyzed. In addition, multiple collinearity analysis in three monocots and three dicot species illustrated that the BBX proteins identified from monocots clustered separately from those of dicots. Moreover, the expression of 11 candidate BBX genes with probable involvement in the regulation of anthocyanin biosynthesis was analyzed in the sprouts of Tartary buckwheat during light treatment. The results of gene structure analysis showed that all the 28 BBX genes contained B-box domain, three genes lacked introns, and these genes were unevenly distributed on the other seven chromosomes except for chromosome 6. The 28 proteins contained 10 conserved motifs and could be divided into five subfamilies. BBX genes of Tartary buckwheat showed varying expression under different conditions demonstrating that FtBBXs might play important roles in Tartary buckwheat growth and development. This study lays a foundation for further understanding of Tartary buckwheat BBX genes and their functions in growth and development as well as regulation of pigmentation in Tartary buckwheat.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fan Yang ◽  
Xiuxia Zhang ◽  
Ruifeng Tian ◽  
Liwei Zhu ◽  
Fang Liu ◽  
...  

Auxin/indoleacetic acid (Aux/IAA) family genes respond to the hormone auxin, which have been implicated in the regulation of multiple biological processes. In this study, all 25 Aux/IAA family genes were identified in Tartary buckwheat (Fagopyrum tataricum) by a reiterative database search and manual annotation. Our study provided comprehensive information of Aux/IAA family genes in buckwheat, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. Aux/IAA family genes were nonuniformly distributed in the buckwheat chromosomes and divided into seven groups by phylogenetic analysis. Aux/IAA family genes maintained a certain correlation and a certain species-specificity through evolutionary analysis with Arabidopsis and other grain crops. In addition, all Aux/IAA genes showed a complex response pattern under treatment of indole-3-acetic acid (IAA). These results provide valuable reference information for dissecting function and molecular mechanism of Aux/IAA family genes in buckwheat.


2018 ◽  
Vol 19 (11) ◽  
pp. 3526 ◽  
Author(s):  
Moyang Liu ◽  
Zhaotang Ma ◽  
Anhu Wang ◽  
Tianrun Zheng ◽  
Li Huang ◽  
...  

Auxin signaling plays an important role in plant growth and development. It responds to various developmental and environmental events, such as embryogenesis, organogenesis, shoot elongation, tropical growth, lateral root formation, flower and fruit development, tissue and organ architecture, and vascular differentiation. However, there has been little research on the Auxin Response Factor (ARF) genes of tartary buckwheat (Fagopyrum tataricum), an important edible and medicinal crop. The recent publication of the whole-genome sequence of tartary buckwheat enables us to study the tissue and expression profile of the FtARF gene on a genome-wide basis. In this study, 20 ARF (FtARF) genes were identified and renamed according to the chromosomal distribution of the FtARF genes. The results showed that the FtARF genes belonged to the related sister pair, and the chromosomal map showed that the duplication of FtARFs was related to the duplication of the chromosome blocks. The duplication of some FtARF genes shows conserved intron/exon structure, which is different from other genes, suggesting that the function of these genes may be diverse. Real-time quantitative PCR analysis exhibited distinct expression patterns of FtARF genes in various tissues and in response to exogenous auxin during fruit development. In this study, 20 FtARF genes were identified, and the structure, evolution, and expression patterns of the proteins were studied. This systematic analysis laid a foundation for the further study of the functional characteristics of the ARF genes and for the improvement of tartary buckwheat crops.


2021 ◽  
Vol 22 (4) ◽  
pp. 1622
Author(s):  
Yanyan Wang ◽  
Zefeng Zhai ◽  
Yueting Sun ◽  
Chen Feng ◽  
Xiang Peng ◽  
...  

B-BOX proteins are zinc finger transcription factors that play important roles in plant growth, development, and abiotic stress responses. In this study, we identified 15 PavBBX genes in the genome database of sweet cherry. We systematically analyzed the gene structures, clustering characteristics, and expression patterns of these genes during fruit development and in response to light and various hormones. The PavBBX genes were divided into five subgroups. The promoter regions of the PavBBX genes contain cis-acting elements related to plant development, hormones, and stress. qRT-PCR revealed five upregulated and eight downregulated PavBBX genes during fruit development. In addition, PavBBX6, PavBBX9, and PavBBX11 were upregulated in response to light induction. We also found that ABA, BR, and GA3 contents significantly increased in response to light induction. Furthermore, the expression of several PavBBX genes was highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways. Some PavBBX genes were strongly induced by ABA, GA, and BR treatment. Notably, PavBBX6 and PavBBX9 responded to all three hormones. Taken together, BBX proteins likely play major roles in regulating anthocyanin biosynthesis in sweet cherry fruit by integrating light, ABA, GA, and BR signaling pathways.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guang Yang ◽  
Wenqiu Pan ◽  
Ruoyu Zhang ◽  
Yan Pan ◽  
Qifan Guo ◽  
...  

Abstract Background Lignin is one of the main components of the cell wall and is directly associated with plant development and defence mechanisms in plants, especially in response to Fusarium graminearum (Fg) infection. Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) is the main regulator determining the efficiency of lignin synthesis and composition. Although it has been characterized in many plants, to date, the importance of the CCoAOMT family in wheat is not well understood. Results Here, a total of 21 wheat CCoAOMT genes (TaCCoAOMT) were identified through an in silico genome search method and they were classified into four groups based on phylogenetic analysis, with the members of the same group sharing similar gene structures and conserved motif compositions. Furthermore, the expression patterns and co-expression network in which TaCCoAOMT is involved were comprehensively investigated using 48 RNA-seq samples from Fg infected and mock samples of 4 wheat genotypes. Combined with qRT-PCR validation of 11 Fg-responsive TaCCoAOMT genes, potential candidates involved in the FHB response and their regulation modules were preliminarily suggested. Additionally, we investigated the genetic diversity and main haplotypes of these CCoAOMT genes in bread wheat and its relative populations based on resequencing data. Conclusions This study identified and characterized the CCoAOMT family in wheat, which not only provided potential targets for further functional analysis, but also contributed to uncovering the mechanism of lignin biosynthesis and its role in FHB tolerance in wheat and beyond.


Author(s):  
Wei Lai ◽  
Zhaoyang Hu ◽  
Chuxia Zhu ◽  
Yingui Yang ◽  
Shiqiang Liu ◽  
...  

Protein ubiquitination is one of the most common modifications that can degrade or modify proteins in eukaryotic cells. The E2 ubiquitin-conjugating enzymes (UBCs) are involved in multiple biological processes of eukaryotes and their response to adverse stresses. Genome-wide survey of the UBC gene family has been performed in many plant species but not in cucumber (Cucumis sativus). In this study, a total of 38 UBC family genes (designated as CsUBC1–CsUBC38) were identified in cucumber. The phylogenetic analysis of UBC proteins from cucumber, Arabidopsis and maize indicated that these proteins could be divided into 15 groups. Most of the phylogenetically related CsUBC members had similar conserved motif patterns and gene structures. The CsUBC genes were unevenly distributed on seven chromosomes, and gene duplication analysis indicated that segmental duplication has played a significant role in the expansion of the cucumber UBC gene family. Promoter analysis of these genes resulted in the identification of many hormone-, stress- and development-related cis-elements. The CsUBC genes exhibited differential expression patterns in different tissues and developmental stages of fruit ripening. In addition, a total of 14 CsUBC genes were differentially expressed upon downy mildew (DM) infection compared with the control. Our results lay the foundation for further clarification of the roles of the CsUBC genes in the future.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Moyang Liu ◽  
Xiaoxiang Wang ◽  
Wenjun Sun ◽  
Zhaotang Ma ◽  
Tianrun Zheng ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Xiaowei Ma ◽  
Feng An ◽  
Lifeng Wang ◽  
Dong Guo ◽  
Guishui Xie ◽  
...  

The rubber tree (Hevea brasiliensis) is a widely cultivated crop in tropical acidic soil that is tolerant to high concentration of aluminum and the aluminum-activated malate transporter (ALMT) plays an important role in plant aluminum detoxification. However, the effects of ALMT on rubber tree aluminum tolerance, growth performance, and latex production are unclear. In this study, 17 HbALMT genes were identified from the genome of rubber trees. The physiological and biochemical characteristics, phylogenetic relationships, gene structures, conserved motifs, cis-elements of promoter, and expression patterns of the identified HbALMT genes were studied. Phylogenetic relationships indicated that these genes were divided into four clusters and genes in the same cluster have similar gene structures and conserved motifs. The promoters of HbALMT genes contain many cis-elements associated with biotic stress and abiotic stress. Quantitative real-time PCR analysis revealed HbALMTs showed various expression patterns in different tissues, indicating the functional diversity of HbALMT genes in different tissues of rubber trees. Transcriptome analysis and qRT-PCR assay showed that most of the HbALMT genes responded to aluminum stress, and among the 17 HbALMTs, HbALMT1, HbALMT2, HbALMT13, and HbALMT15 displayed higher expression levels in roots after two or five days of Al treatments, indicating their potential involvement in aluminum detoxification. Taken together, this study laid a foundation for further understanding the molecular evolution of the ALMT genes and their involvement in rubber tree aluminum adaption.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanhua Li ◽  
Liangjie Niu ◽  
Xiaolin Wu ◽  
Claudia Faleri ◽  
Fuju Tai ◽  
...  

Cysteine proteases, belonging to the C1-papain family, play a major role in plant growth and development, senescence, and immunity. There is evidence to suggest that pollen cysteine protease (CP) (ZmCP03) is involved in regulating the anther development and pollen formation in maize. However, there is no report on the genome-wide identification and comparison of CPs in the pollen coat and other tissues in maize. In this study, a total of 38 homologous genes of ZmCP03 in maize were identified. Subsequently, protein motifs, conserved domains, gene structures, and duplication patterns of 39 CPs are analyzed to explore their evolutionary relationship and potential functions. The cis-elements were identified in the upstream sequence of 39 CPs, especially those that are related to regulating growth and development and responding to environmental stresses and hormones. The expression patterns of these genes displayed remarked difference at a tissue or organ level in maize based on the available transcriptome data in the public database. Quantitative reverse transcription PCR (RT-qPCR) analysis showed that ZmCP03 was preferably expressed at a high level in maize pollen. Analyses by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot, immunofluorescence and immunogold electron microscopy all validated the cellular localization of ZmCP03 in both the pollen coat and pollen cytoplasm. In addition, 142 CP genes from Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and cotton (Gossypium hirsutum), together with 39 maize CPs, were retrieved to analyze their evolution by comparing with orthologous genes. The results suggested that ZmCP03 was relatively conservative and stable during evolution. This study may provide a referential evidence on the function of ZmCP03 in pollen development and germination in maize.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7878 ◽  
Author(s):  
Youxin Yang ◽  
Jingwen Li ◽  
Hao Li ◽  
Yingui Yang ◽  
Yelan Guang ◽  
...  

The basic leucine zipper (bZIP) family transcription factors play crucial roles in regulating plant development and stress response. In this study, we identified 62 ClabZIP genes from watermelon genome, which were unevenly distributed across the 11 chromosomes. These ClabZIP proteins could be classified into 13 groups based on the phylogenetic relationships, and members in the same group showed similar compositions of conserved motifs and gene structures. Transcriptome analysis revealed that a number of ClabZIP genes have important roles in the melatonin (MT) induction of cold tolerance. In addition, some ClabZIP genes were induced or repressed under red light (RL) or root-knot nematode infection according to the transcriptome data, and the expression patterns of several ClabZIP genes were further verified by quantitative real-time PCR, revealing their possible roles in RL induction of watermelon defense against nematode infection. Our results provide new insights into the functions of different ClabZIP genes in watermelon and their roles in response to cold stress and nematode infection.


Sign in / Sign up

Export Citation Format

Share Document