scholarly journals Transtibial limb loss does not increase metabolic cost in three-dimensional computer simulations of human walking

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11960
Author(s):  
Ross H. Miller ◽  
Elizabeth Russell Esposito

Loss of a lower limb below the knee, i.e., transtibial limb loss, and subsequently walking with a prosthesis, is generally thought to increase the metabolic cost of walking vs. able-bodied controls. However, high-functioning individuals with limb loss such as military service members often walk with the same metabolic cost as controls. Here we used a 3-D computer model and optimal control simulation approach to test the hypothesis that transtibial limb loss in and of itself causes an increase in metabolic cost of walking. We first generated N = 36 simulations of walking at 1.45 m/s using a “pre-limb loss” model, with two intact biological legs, that minimized deviations from able-bodied experimental walking mechanics with minimum muscular effort. We then repeated these simulations using a “post-limb loss” model, with the right leg’s ankle muscles and joints replaced with a simple model of a passive transtibial prosthesis. No other changes were made to the post-limb loss model’s remaining muscles or musculoskeletal parameters compared to the pre-limb loss case. Post-limb loss, the gait deviations on average increased by only 0.17 standard deviations from the experimental means, and metabolic cost did not increase (3.58 ± 0.10 J/m/kg pre-limb loss vs. 3.59 ± 0.12 J/m/kg post-limb loss, p = 0.65). The results suggest that transtibial limb loss does not directly lead to an increase in metabolic cost, even when deviations from able-bodied gait mechanics are minimized. High metabolic costs observed in individuals with transtibial limb loss may be due to secondary changes in strength or general fitness after limb loss, modifiable prosthesis issues, or to prioritization of factors that affect locomotor control other than gait deviations and muscular effort.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Naoki Enomoto ◽  
Kazuhiko Yamada ◽  
Daiki Kato ◽  
Shusuke Yagi ◽  
Hitomi Wake ◽  
...  

Abstract Background Bochdalek hernia is a common congenital diaphragmatic defect that usually manifests with cardiopulmonary insufficiency in neonates. It is very rare in adults, and symptomatic cases are mostly left-sided. Diaphragmatic defects generally warrant immediate surgical intervention to reduce the risk of incarceration or strangulation of the displaced viscera. Case presentation A 47-year-old woman presented with dyspnea on exertion. Computed tomography revealed that a large part of the intestinal loop with superior mesenteric vessels and the right kidney were displaced into the right thoracic cavity. Preoperative three-dimensional (3D) simulation software visualized detailed anatomy of displaced viscera and the precise location and size of the diaphragmatic defect. She underwent elective surgery after concomitant pulmonary hypertension was stabilized preoperatively. The laparotomic approach was adopted. Malformation of the liver and the presence of intestinal malrotation were confirmed during the operation. The distal part of the duodenum, jejunum, ileum, colon, and right kidney were reduced into the abdominal cavity consecutively. A large-sized oval defect was closed with monofilament polypropylene mesh. No complications occurred postoperatively. Conclusion Symptomatic right-sided Bochdalek hernia in adults is exceedingly rare and is frequently accompanied by various visceral anomalies. Accurate diagnosis and appropriate surgical repair are crucial to prevent possible incarceration or strangulation. The preoperative 3D simulation provided comprehensive information on anatomy and concomitant anomalies and helped surgeons plan the operation meticulously and perform procedures safely.


2020 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Cezary Grochowski ◽  
Kamil Jonak ◽  
Marcin Maciejewski ◽  
Andrzej Stępniewski ◽  
Mansur Rahnama-Hezavah

Purpose: The aim of this study was to assess the volumetry of the hippocampus in the Leber’s hereditary optic neuropathy (LHON) of blind patients. Methods: A total of 25 patients with LHON were randomly included into the study from the national health database. A total of 15 patients were selected according to the inclusion criteria. The submillimeter segmentation of the hippocampus was based on three-dimensional spoiled gradient recalled acquisition in steady state (3D-SPGR) BRAVO 7T magnetic resonance imaging (MRI) protocol. Results: Statistical analysis revealed that compared to healthy controls (HC), LHON subjects had multiple significant differences only in the right hippocampus, including a significantly higher volume of hippocampal tail (p = 0.009), subiculum body (p = 0.018), CA1 body (p = 0.002), hippocampal fissure (p = 0.046), molecular layer hippocampus (HP) body (p = 0.014), CA3 body (p = 0.006), Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)–GC ML DG body (p = 0.003), CA4 body (p = 0.001), whole hippocampal body (p = 0.018), and the whole hippocampus volume (p = 0.023). Discussion: The ultra-high-field magnetic resonance imaging allowed hippocampus quality visualization and analysis, serving as a powerful in vivo diagnostic tool in the diagnostic process and LHON disease course assessment. The study confirmed previous reports regarding volumetry of hippocampus in blind individuals.


2020 ◽  
Vol 46 (08) ◽  
pp. 895-907
Author(s):  
Nina D. Anfinogenova ◽  
Oksana Y. Vasiltseva ◽  
Alexander V. Vrublevsky ◽  
Irina N. Vorozhtsova ◽  
Sergey V. Popov ◽  
...  

AbstractPrompt diagnosis of pulmonary embolism (PE) remains challenging, which often results in a delayed or inappropriate treatment of this life-threatening condition. Mobile thrombus in the right cardiac chambers is a neglected cause of PE. It poses an immediate risk to life and is associated with an unfavorable outcome and high mortality. Thrombus residing in the right atrial appendage (RAA) is an underestimated cause of PE, especially in patients with atrial fibrillation. This article reviews achievements and challenges of detection and management of the right atrial thrombus with emphasis on RAA thrombus. The capabilities of transthoracic and transesophageal echocardiography and advantages of three-dimensional and two-dimensional echocardiography are reviewed. Strengths of cardiac magnetic resonance imaging (CMR), computed tomography, and cardiac ventriculography are summarized. We suggest that a targeted search for RAA thrombus is necessary in high-risk patients with PE and atrial fibrillation using transesophageal echocardiography and/or CMR when available independently on the duration of the disease. High-risk patients may also benefit from transthoracic echocardiography with right parasternal approach. The examination of high-risk patients should involve compression ultrasonography of lower extremity veins along with the above-mentioned technologies. Algorithms for RAA thrombus risk assessment and protocols aimed at identification of patients with RAA thrombosis, who will potentially benefit from treatment, are warranted. The development of treatment protocols specific for the diverse populations of patients with right cardiac thrombosis is important.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keunbada Son ◽  
Young-Tak Son ◽  
Ji-Min Lee ◽  
Kyu-Bok Lee

AbstractThis study evaluated the marginal and internal fit and intaglio surface trueness of interim crowns fabricated from tooth preparation scanned at four finish line locations. The right maxillary first molar tooth preparation model was fabricated using a ceramic material and placed in four finish line locations (supragingival, equigingival, subgingival, and subgingival with a cord). Intraoral scanning was performed. Crowns were designed based on the scanned area. Interim crowns were fabricated using a stereolithography three-dimensional (3D) printer (N = 16 per location). Marginal and internal fit were evaluated with a silicone replica technique. Intaglio surface trueness was evaluated using a 3D inspection software. One-way analysis of variance and Tukey HSD test were performed for comparisons (α = 0.05). The marginal and internal fit showed significant differences according to locations (P < 0.05); the marginal fit showed the best results in the supragingival finish line (P < 0.05). Intaglio surface trueness was significantly different in the marginal region, with the highest value in the subgingival location (P < 0.05). Crowns fabricated on the subgingival finish line caused inaccurate marginal fit due to poor fabrication reproducibility of the marginal region. The use of an intraoral scanner should be decided on the clinical situation and needs.


Author(s):  
Wei Liu ◽  
John Kovaleski ◽  
Marcus Hollis

Robotic assisted rehabilitation, taking advantage of neuroplasticity, has been shown to be helpful in regaining some degree of gait performance. Robot-applied movement along with voluntary efferent motor commands coordinated with the robot allows optimization of motion training. We present the design and characteristics of a novel foot-based 6-degree-of-freedom (DOF) robot-assisted gait training system where the limb trajectory mirrored the normal walking gait. The goal of this study was to compare robot-assisted gait to normal walking gait, where the limb moved independently without robotics. Motion analysis was used to record the three-dimensional kinematics of the right lower extremity. Walking motion data were determined and transferred to the robotic motion application software for inclusion in the robotic trials where the robot computer software was programmed to produce a gait pattern in the foot equivalent to the gait pattern recorded from the normal walking gait trial. Results demonstrated that ankle; knee and hip joint motions produced by the robot are consistent with the joint motions in walking gait. We believe that this control algorithm provides a rationale for use in future rehabilitation, targeting robot-assisted training in people with neuromuscular disabilities such as stroke.


2018 ◽  
Vol 39 (8) ◽  
pp. 1582-1610 ◽  
Author(s):  
NICK CADDICK ◽  
HELEN CULLEN ◽  
AMANDA CLARKE ◽  
MATT FOSSEY ◽  
MICHAEL HILL ◽  
...  

ABSTRACTThe impact of losing a limb in military service extends well beyond initial recovery and rehabilitation, with long-term consequences and challenges requiring health-care commitments across the lifecourse. This paper presents a systematic review of the current state of knowledge regarding the long-term impact of ageing and limb-loss in military veterans. Key databases were systematically searched including: ASSIA, CINAHL, Cochrane Library, Medline, Web of Science, PsycArticles/PsychInfo, ProQuest Psychology and ProQuest Sociology Journals, and SPORTSDiscus. Empirical studies which focused on the long-term impact of limb-loss and/or health-care requirements in veterans were included. The search process revealed 30 papers relevant for inclusion. These papers focused broadly on four themes: (a) long-term health outcomes, prosthetics use and quality of life; (b) long-term psycho-social adaptation and coping with limb-loss; (c) disability and identity; and (d) estimating the long-term costs of care and prosthetic provision. Findings present a compelling case for ensuring the long-term care needs and costs of rehabilitation for older limbless veterans are met. A dearth of information on the lived experience of limb-loss and the needs of veterans’ families calls for further research to address these important issues.


2001 ◽  
Vol 95 (1) ◽  
pp. 115-118 ◽  
Author(s):  
Ralf Weigel ◽  
Michael Rittmann ◽  
Joachim K. Krauss

✓ The authors report on a 31-year-old man with spontaneous craniocervical osseous fusion secondary to cervical dystonia (CD). After an 8-year history of severe CD, the patient developed a fixed rotation of his head to the right. Three-dimensional computerized tomography reconstructions revealed rotation and fixation of the occiput and C-1 relative to C-2, which was similar to that seen in atlantoaxial rotatory fixation. There was abnormal ossification of the odontoid facet joints and ligaments. Additional ossification was observed in the cervical soft tissue bridging the lateral mass of C-1 and the occiput. The patient underwent partial myectomy of the dystonic left sternocleidomastoid muscle and selective posterior ramisectomy of the right posterior neck muscles; postoperatively he experienced relief of his neck pain. In patients with CD refractory to conservative treatment, the appropriate timing of surgical treatment is important.


2015 ◽  
Vol 114 (1) ◽  
pp. 520-530 ◽  
Author(s):  
Yue Ban ◽  
Benjamin E. Smith ◽  
Michael R. Markham

The bioelectrical properties and resulting metabolic demands of electrogenic cells are determined by their morphology and the subcellular localization of ion channels. The electric organ cells (electrocytes) of the electric fish Eigenmannia virescens generate action potentials (APs) with Na+ currents >10 μA and repolarize the AP with Na+-activated K+ (KNa) channels. To better understand the role of morphology and ion channel localization in determining the metabolic cost of electrocyte APs, we used two-photon three-dimensional imaging to determine the fine cellular morphology and immunohistochemistry to localize the electrocytes' ion channels, ionotropic receptors, and Na+-K+-ATPases. We found that electrocytes are highly polarized cells ∼1.5 mm in anterior-posterior length and ∼0.6 mm in diameter, containing ∼30,000 nuclei along the cell periphery. The cell's innervated posterior region is deeply invaginated and vascularized with complex ultrastructural features, whereas the anterior region is relatively smooth. Cholinergic receptors and Na+ channels are restricted to the innervated posterior region, whereas inward rectifier K+ channels and the KNa channels that terminate the electrocyte AP are localized to the anterior region, separated by >1 mm from the only sources of Na+ influx. In other systems, submicrometer spatial coupling of Na+ and KNa channels is necessary for KNa channel activation. However, our computational simulations showed that KNa channels at a great distance from Na+ influx can still terminate the AP, suggesting that KNa channels can be activated by distant sources of Na+ influx and overturning a long-standing assumption that AP-generating ion channels are restricted to the electrocyte's posterior face.


1996 ◽  
Author(s):  
Steven L. Puterbaugh ◽  
William W. Copenhaver ◽  
Chunill Hah ◽  
Arthur J. Wennerstrom

An analysis of the effectiveness of a three-dimensional shock loss model used in transonic compressor rotor design is presented. The model was used during the design of an aft-swept, transonic compressor rotor. The demonstrated performance of the swept rotor, in combination with numerical results, is used to determine the strengths and weaknesses of the model. The numerical results were obtained from a fully three-dimensional Navier-Stokes solver. The shock loss model was developed to account for the benefit gained with three-dimensional shock sweep. Comparisons with the experimental and numerical results demonstrated that shock loss reductions predicted by the model due to the swept shock induced by the swept leading edge of the rotor were exceeded. However, near the tip the loss model under-predicts the loss because the shock geometry assumed by the model remains swept in this region while the numerical results show a more normal shock orientation. The design methods and the demonstrated performance of the swept rotor is also presented. Comparisons are made between the design intent and measured performance parameters. The aft-swept rotor was designed using an inviscid axisymmetric streamline curvature design system utilizing arbitrary airfoil blading geometry. The design goal specific flow rate was 214.7 kg/sec/m2 (43.98 lbm/sec/ft2), the design pressure ratio goal was 2.042, and the predicted design point efficiency was 94.0. The rotor tip sped was 457.2 m/sec (1500 ft/sec). The design flow rate was achieved while the pressure ratio fell short by 0.07. Efficiency was 3 points below prediction, though at a very high 91 percent. At this operating condition the stall margin was 11 percent.


Sign in / Sign up

Export Citation Format

Share Document