scholarly journals Selection and evaluation of reference genes for analysis of mouse(Mus musculus) sex-dimorphic brain development

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2909 ◽  
Author(s):  
Tanya T. Cheung ◽  
Mitchell K. Weston ◽  
Megan J. Wilson

The development of the brain is sex-dimorphic, and as a result so are many neurological disorders. One approach for studying sex-dimorphic brain development is to measure gene expression in biological samples using RT-qPCR. However, the accuracy and consistency of this technique relies on the reference gene(s) selected. We analyzed the expression of ten reference genes in male and female samples over three stages of brain development, using popular algorithms NormFinder, GeNorm and Bestkeeper. The top ranked reference genes at each time point were further used to quantify gene expression of three sex-dimorphic genes (Wnt10b,XistandCYP7B1). When comparing gene expression between the sexes expression at specific time points the best reference gene combinations are:Sdha/Pgk1at E11.5,RpL38/SdhaE12.5, andActb/RpL37at E15.5. When studying expression across time, the ideal reference gene(s) differs with sex. For XY samples a combination ofActb/Sdha. In contrast, when studying gene expression across developmental stage with XX samples,Sdha/Gapdhwere the top reference genes. Our results identify the best combination of two reference genes when studying male and female brain development, and emphasize the importance of selecting the correct reference genes for comparisons between developmental stages.


2019 ◽  
Vol 70 (4) ◽  
pp. 261-267
Author(s):  
Gaigai Du ◽  
Liyuan Wang ◽  
Huawei Li ◽  
Peng Sun ◽  
Jianmin Fu ◽  
...  

Background and aims Persimmon (Diospyros kaki) is an economically important fruit tree species with complex flowering characteristics. To obtain accurate expression pattern analysis results, it is vital to select a reliable gene for the normalization of real-time quantitative polymerase chain reaction data. The aim of this study was to identify the optimal internal control gene among six candidate genes for gene expression analysis in different persimmon organs and developmental stages. Materials and methods This analysis was conducted using geNorm and NormFinder software to show differences in the stability of the six reference genes among tissues and floral developmental stages of the same plant. Results Although genes that exhibited moderate expression in NormFinder revealed slightly different expression stabilities than those obtained by geNorm, both sets of results showed that GAPDH was the best reference gene in different organs and floral buds at different developmental stages, whereas 18SrRNA was the least stable gene. Conclusions Based on the overall ranking, GAPDH is the most suitable reference gene and is highly recommended for gene expression studies in different organs and different developmental stages of persimmon. This study provides useful reference data for future gene expression studies and will contribute to improving the accuracy of gene expression results in persimmon.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jie Ren ◽  
Ningning Zhang ◽  
Xiangjie Li ◽  
Xiaogang Sun ◽  
Jiangping Song

Abstract Background Real-time quantitative polymerase chain reaction (RT-qPCR) is a widely-used standard assay for assessing gene expression. RT-qPCR data requires reference genes for normalization to make the results comparable. Therefore, the selected reference gene should be highly stable in its expression throughout the experimental datasets. So far, reports about the optimal set of reference genes in murine left ventricle (LV) across embryonic and postnatal stages are few. The objective of our research was to identify the appropriate reference genes in murine LV among different developmental stages. Methods We investigated the gene expression profiles of 21 widely used housekeeping genes in murine LV from 7 different developmental stages (almost throughout the whole period of the mouse lifespan). The stabilities of the potential reference genes were evaluated by five methods: GeNorm, NormFinder, BestKeeper, Delta-Ct and RefFinder. Results We proposed a set of reliable reference genes for normalization of RT-qPCR experimental data in different conditions. Furthermore, our results showed that 6 genes (18S, Hmbs, Ubc, Psmb4, Tfrc and Actb) are not recommended to be used as reference genes in murine LV development studies. The data also suggested that the Rplp0 gene might serve as an optimal reference gene in gene expression analysis. Conclusions Our study investigated the expression stability of the commonly used reference genes in process of LV development and maturation. We proposed a set of optimal reference genes that are suitable for accurate normalization of RT-qPCR data in specific conditions. Our findings may be helpful in future studies for investigating the gene expression patterns and mechanism of mammalian heart development.



2020 ◽  
Author(s):  
Chaofan Jin ◽  
Weihao Song ◽  
Mengya Wang ◽  
Jie Qi ◽  
Quanqi Zhang ◽  
...  

Abstract Background: The quantitative real-time reverse transcription PCR (qRT-PCR) is a widely used technique that relies on the reference gene for gene expression normalization. Selecting a suitable reference gene is a crucial step to obtain an accurate result in qRT-PCR. However, most previous studies of fishes adopted reference genes that were commonly used in mammals without validation. Results: In this study, we utilized 89 transcriptome datasets covering early developmental stages and adult tissues, and carried out transcriptome-wide identification and validation of reference genes in Sebastes schlegelii. Finally, 121 candidate reference genes were identified based on four criteria. Eight candidates (METAP2, BTF3L4, EIF5A1, TCTP, UBC, PAIRB, RAB10, and DLD) and four commonly used reference genes (TUBA, ACTB, GAPDH, RPL17) in mammals were selected for validation via qRT- PCR and four statistical methods (delta-Ct, BestKeeper, geNorm, and NormFinder). The results revealed that the candidate reference genes we recommended are more stable than traditionally used ones. Conclusions: This is the first study to conduct transcriptome-wide identification and validation of reference genes for quantitative RT-PCR in the black rockfish, and lay an important foundation for gene expression analysis in teleost.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuping Li ◽  
Xiaoju Liang ◽  
Xuguo Zhou ◽  
Yu An ◽  
Ming Li ◽  
...  

AbstractGlycyrrhiza, a genus of perennial medicinal herbs, has been traditionally used to treat human diseases, including respiratory disorders. Functional analysis of genes involved in the synthesis, accumulation, and degradation of bioactive compounds in these medicinal plants requires accurate measurement of their expression profiles. Reverse transcription quantitative real-time PCR (RT-qPCR) is a primary tool, which requires stably expressed reference genes to serve as the internal references to normalize the target gene expression. In this study, the stability of 14 candidate reference genes from the two congeneric species G. uralensis and G. inflata, including ACT, CAC, CYP, DNAJ, DREB, EF1, RAN, TIF1, TUB, UBC2, ABCC2, COPS3, CS, R3HDM2, were evaluated across different tissues and throughout various developmental stages. More importantly, we investigated the impact of interactions between tissue and developmental stage on the performance of candidate reference genes. Four algorithms, including geNorm, NormFinder, BestKeeper, and Delta Ct, were used to analyze the expression stability and RefFinder, a comprehensive software, provided the final recommendation. Based on previous research and our preliminary data, we hypothesized that internal references for spatio-temporal gene expression are different from the reference genes suited for individual factors. In G. uralensis, the top three most stable reference genes across different tissues were R3HDM2, CAC and TUB, while CAC, CYP and ABCC2 were most suited for different developmental stages. CAC is the only candidate recommended for both biotic factors, which is reflected in the stability ranking for the spatio (tissue)-temporal (developmental stage) interactions (CAC, R3HDM2 and DNAJ). Similarly, in G. inflata, COPS3, R3HDM2 and DREB were selected for tissues, while RAN, COPS3 and CS were recommended for developmental stages. For the tissue-developmental stage interactions, COPS3, DREB and ABCC2 were the most suited reference genes. In both species, only one of the top three candidates was shared between the individual factors and their interactions, specifically, CAC in G. uralensis and COPS3 in G. inflata, which supports our overarching hypothesis. In summary, spatio-temporal selection of reference genes not only lays the foundation for functional genomics research in Glycyrrhiza, but also facilitates these traditional medicinal herbs to reach/maximize their pharmaceutical potential.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Xiong ◽  
Xiangyun Cheng ◽  
Chao Zhang ◽  
Roland Manfred Klar ◽  
Tao He

Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) remains one of the best-established techniques to assess gene expression patterns. However, appropriate reference gene(s) selection remains a critical and challenging subject in which inappropriate reference gene selction can distort results leading to false interpretations. To date, mixed opinions still exist in how to choose the most optimal reference gene sets in accodrance to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guideline. Therefore, the purpose of this study was to investigate which schemes were the most feasible for the identification of reference genes in a bone and cartilage bioengineering experimental setting. In this study, rat bone mesenchymal stem cells (rBMSCs), skeletal muscle tissue and adipose tissue were utilized, undergoing either chondrogenic or osteogenic induction, to investigate the optimal reference gene set identification scheme that would subsequently ensure stable and accurate interpretation of gene expression in bone and cartilage bioengineering. Results The stability and pairwise variance of eight candidate reference genes were analyzed using geNorm. The V0.15- vs. Vmin-based normalization scheme in rBMSCs had no significant effect on the eventual normalization of target genes. In terms of the muscle tissue, the results of the correlation of NF values between the V0.15 and Vmin schemes and the variance of target genes expression levels generated by these two schemes showed that different schemes do indeed have a significant effect on the eventual normalization of target genes. Three selection schemes were adopted in terms of the adipose tissue, including the three optimal reference genes (Opt3), V0.20 and Vmin schemes, and the analysis of NF values with eventual normalization of target genes showed that the different selection schemes also have a significant effect on the eventual normalization of target genes. Conclusions Based on these results, the proposed cut-off value of Vn/n + 1 under 0.15, according to the geNorm algorithm, should be considered with caution. For cell only experiments, at least rBMSCs, a Vn/n + 1 under 0.15 is sufficient in RT-qPCR studies. However, when using certain tissue types such as skeletal muscle and adipose tissue the minimum Vn/n + 1 should be used instead as this provides a far superior mode of generating accurate gene expression results. We thus recommended that when the stability and variation of a candidate reference genes in a specific study is unclear the minimum Vn/n + 1 should always be used as this ensures the best and most accurate gene expression value is achieved during RT-qPCR assays.



Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 960
Author(s):  
Meagan Archer ◽  
Jianping Xu

Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of Aspergillus. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with beta-tubulin being the most used reference gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of Aspergillus.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Wang ◽  
Tingting Ren ◽  
Prince Marowa ◽  
Haina Du ◽  
Zongchang Xu

AbstractQuantitative real-time polymerase chain reaction (qPCR) using a stable reference gene is widely used for gene expression research. Suaeda glauca L. is a succulent halophyte and medicinal plant that is extensively used for phytoremediation and extraction of medicinal compounds. It thrives under high-salt conditions, which promote the accumulation of high-value secondary metabolites. However, a suitable reference gene has not been identified for gene expression standardization in S. glauca under saline conditions. Here, 10 candidate reference genes, ACT7, ACT11, CCD1, TUA5, UPL1, PP2A, DREB1D, V-H+-ATPase, MPK6, and PHT4;5, were selected from S. glauca transcriptome data. Five statistical algorithms (ΔCq, geNorm, NormFinder, BestKeeper, and RefFinder) were applied to determine the expression stabilities of these genes in 72 samples at different salt concentrations in different tissues. PP2A and TUA5 were the most stable reference genes in different tissues and salt treatments, whereas DREB1D was the least stable. The two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with MYB and AP2 in germinating seeds of S. glauca exposed to different NaCl concentrations. Our study provides a foundational framework for standardizing qPCR analyses, enabling accurate gene expression profiling in S. glauca.



2021 ◽  
Author(s):  
Zhongyi Yang ◽  
Rui Zhang ◽  
Zhichun Zhou

Abstract Background Quantitative real-time PCR (qRT-PCR) is a reliable and high-throughput technique for gene expression studies, but its accuracy depends on the expression stability of reference genes. Schima superba is a strong resistance and fast-growing timber specie. However, so far, reliable reference gene identifications have not been reported in S. superba. In this study, we screened and verified the stably expressed reference genes in different tissues of S. superba.Results Nineteen candidate reference genes were selected and evaluated for their expression stability in different tissues. Three software programs (geNorm, NormFinder, and BestKeeper) were used to evaluate the reference gene transcript stabilities, and comprehensive stability ranking was generated by the geometric mean method. Our results identified that SsuACT was the most stable reference gene, SsuACT + SsuRIB was the best reference genes combination for different tissues. Finally, the stable and less stable reference genes were verified using the SsuSND1 expression in different tissues.Conclusions This is the first report to verify the appropriate reference genes for normalizing gene expression in S. superba for different tissues, which will facilitate future elucidation of gene regulations in this species, and useful references for relative species.



2021 ◽  
Author(s):  
Lichun Zhang ◽  
Xiaoqian Yang ◽  
Yiyi Yin ◽  
Jinxing Wang ◽  
Yanwei Wang

Abstract Quantitative real time polymerase chain reaction (qRT-PCR) is a common method to analyze gene expression. Due to differences in RNA quantity, quality, and reverse transcription efficiency between qRT-PCR samples, reference genes are used as internal standards to normalize gene expression. However, few universal genes especially miRNAs have been identified as reference so far. Therefore, it is essential to identify reference genes that can be used across various experimental conditions, stress treatments, or tissues. In this study, 14 microRNAs (miRNAs) and 5.8S rRNA were assessed for expression stability in poplar trees infected with canker pathogen. Using three reference gene analysis programs, we found that miR156g and miR156a exhibited stable expression throughout the infection process. miR156g and miR156a were then tested as internal standards to measure the expression of miR1447 and miR171c, and the results were compared to small RNA sequencing (RNA-seq) data. We found that when miR156a was used as the reference gene, the expression of miR1447 and miR171c were consistent with the small RNA-seq expression profiles. Therefore, miR156a was the most stable miRNAs examined in this study, and could be used as a reference gene in poplar under canker pathogen stress, which should enable comprehensive comparisons of miRNAs expression and avoid the bias caused by different lenth between detected miRNAs and traditional referece genes. The present study has expanded the miRNA reference genes available for gene expression studies in trees under biotic stress.



PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12298
Author(s):  
Maokai Yan ◽  
Xingyue Jin ◽  
Yanhui Liu ◽  
Huihuang Chen ◽  
Tao Ye ◽  
...  

Background Sugarcane (Saccharum spontaneum L.), the major sugar and biofuel feedstock crop, is cultivated mainly by vegetative propagation worldwide due to the infertility of female reproductive organs resulting in the reduction of quality and output of sugar. Deciphering the gene expression profile during ovule development will improve our understanding of the complications underlying sexual reproduction in sugarcane. Optimal reference genes are essential for elucidating the expression pattern of a given gene by quantitative real-time PCR (qRT-PCR). Method In this study, based on transcriptome data obtained from sugarcane ovule, eighteen candidate reference genes were identified, cloned, and their expression levels were evaluated across five developmental stages ovule (AC, MMC, Meiosis, Mitosis, and Mature). Results Our results indicated that FAB2 and MOR1 were the most stably expressed genes during sugarcane female gametophyte development. Moreover, two genes, cell cycle-related genes REC8 and CDK, were selected, and their feasibility was validated. This study provides important insights into the female gametophyte development of sugarcane and reports novel reference genes for gene expression research on sugarcane sexual reproduction.



Sign in / Sign up

Export Citation Format

Share Document