scholarly journals Assessment of perioperative stress in colorectal cancer by use of in vitro cell models: a systematic review

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4033 ◽  
Author(s):  
Tove Kirkegaard ◽  
Mikail Gögenur ◽  
Ismail Gögenur

Background The perioperative period is important for patient outcome. Colorectal cancer surgery can lead to metastatic disease due to release of disseminated tumor cells and the induction of surgical stress response. To explore the overall effects on surgically-induced changes in serum composition, in vitro model systems are useful. Methods A systematic search in PubMed and EMBASE was performed to identify studies describing in vitro models used to investigate cancer cell growth/proliferation, cell migration, cell invasion and cell death of serum taken pre- and postoperatively from patients undergoing colorectal tumor resection. Results Two authors (MG and TK) independently reviewed 984 studies and identified five studies, which fulfilled the inclusion criteria. Disagreements were solved by discussion. All studies investigated cell proliferation and cell invasion, whereas three studies investigated cell migration, and only one study investigated cell death/apoptosis. One study investigated postoperative peritoneal infection due to anastomotic leak, one study investigated mode of anesthesia (general anesthesia with volatile or intravenous anesthetics), and one study investigated preoperative intervention with granulocyte macrophage colony stimulating factor (GMCSF). In all studies an increased proliferation, cell migration and invasion was demonstrated after surgery. Anesthetics with propofol and intervention with GMCSF significantly reduced postoperative cell proliferation, whereas peritoneal infection enhanced the invasive capability of tumor cells. Conclusion This study suggests that in vitro cell models are useful and reliable tools to explore the effect of surgery on colorectal cancer cell proliferation and metastatic ability. The models should therefore be considered as additional tests to investigate the effects of perioperative interventions.

2019 ◽  
Vol 19 (5) ◽  
pp. 610-619 ◽  
Author(s):  
Xue-Qing Zhang ◽  
Lu-Ting Yu ◽  
Pei Du ◽  
Tian-Qi Yin ◽  
Zhi-Yuan Zhang ◽  
...  

Background:Regenerating islet-derived gene family member 4 (Reg4), a well-investigated growth factor in the regenerative pancreas, has recently been reported to be highly associated with a majority of gastrointestinal cancers. Pathological hyper-expression or artificial over-expression of Reg4 causes acceleration of tumor growth, migration, and resistance to chemotherapeutic 5-Fluorouracil (5-FU). Until now, no method has been successfully established for eliminating the effects of Reg4 protein.Methods:This study reports the production of an engineered immunoglobin, a single-chain variable fragment (scFv-Reg4), to specifically bind Reg4 and block the bioactivity. The complementary-determining regions (CDRs) against Reg4 were assigned using MOE and ZDOCK servers. The binding affinity (KD) was determined by bio-layer interferometry (BLI). MKN45 and AGS cell proliferation was determined by Thiazolyl blue tetrazolium bromide (MTT) method and the cell apoptosis was detected by flow cytometry assay.Results:The KD of scFv-Reg4 to Reg4 was determined to be 1.91×10-8. In MKN45 and AGS cell lines, scFv- Reg4 depressed Reg4-stimulated cell proliferation and the inhibitory rates were 27.7±1.5% and 17.3±2.6%, respectively. Furthermore, scFv significantly enhanced 5-FU-induced cell death, from 23.0±1.0% to 28.4±1.2% in MKN45 and 28.2±0.7% to 36.6±0.6% in AGS cells. Treatment with scFv alone could lyse cancer cells to a certain extent, but no significance has been observed.Conclusion:The single-chain antibody (scFv-Reg4) significantly inhibited gastric cancer cell proliferation and synergistically enhanced the lethal effect of 5-FU. Thus, traditional chemo-/radio- therapeutics supplemented with scFv-Reg4 may provide advances in the strategy for gastrointestinal cancer treatment.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Simona Mareike Lüttgenau ◽  
Christin Emming ◽  
Thomas Wagner ◽  
Julia Harms ◽  
Justine Guske ◽  
...  

AbstractLoss of apical-basal polarity and downregulation of cell-cell contacts is a critical step during the pathogenesis of cancer. Both processes are regulated by the scaffolding protein Pals1, however, it is unclear whether the expression of Pals1 is affected in cancer cells and whether Pals1 is implicated in the pathogenesis of the disease.Using mRNA expression data and immunostainings of cancer specimen, we show that Pals1 is frequently downregulated in colorectal cancer, correlating with poorer survival of patients. We further found that Pals1 prevents cancer cell metastasis by controlling Rac1-dependent cell migration through inhibition of Arf6, which is independent of the canonical binding partners of Pals1. Loss of Pals1 in colorectal cancer cells results in increased Arf6 and Rac1 activity, enhanced cell migration and invasion in vitro and increased metastasis of transplanted tumor cells in mice. Thus, our data reveal a new function of Pals1 as a key inhibitor of cell migration and metastasis of colorectal cancer cells. Notably, this new function is independent of the known role of Pals1 in tight junction formation and apical-basal polarity.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yixin Tong ◽  
Yuan Huang ◽  
Yuchao Zhang ◽  
Xiangtai Zeng ◽  
Mei Yan ◽  
...  

AbstractAt present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Shihua Ding ◽  
Shaohui Tang ◽  
Min Wang ◽  
Donghai Wu ◽  
Haijian Guo

Background and Aims. Acyl-CoA synthetase 5 (ACS5) has been reported to be associated with the development of various cancers, but the role of it in colorectal cancer (CRC) is not well understood. The present study aimed to explore the potential role of ACS5 in the development and progression of CRC. Methods. ACS5 expression in CRC tissues and CRC cell lines was examined, and its clinical significance was analyzed. The role of ACS5 in cell proliferation, apoptosis, and invasion was examined in vitro. Results. We found that ACS5 expression was upregulated in CRC cells and CRC tissues and that high ACS5 expression was more frequent in CRC patients with excess muscular layer and with poor tumor differentiation. Furthermore, knockdown of ACS5 in HT29 and SW480 cells significantly dampened cell proliferation, induced cell apoptosis, and reduced cell migration and invasion. In contrast, the ectopic overexpression of ACS5 in LOVO and SW620 cells remarkably promoted cell proliferation, inhibited cell apoptosis, and enhanced cell migration and invasion. Enhanced cell growth and invasion ability mediated by the gain of ACS5 expression were associated with downregulation of caspase-3 and E-cadherin and upregulation of survivin and CD44. Conclusions. Our data demonstrate that ACS5 can promote the growth and invasion of CRC cells and provide a potential target for CRC gene therapy.


Acta Naturae ◽  
2015 ◽  
Vol 7 (2) ◽  
pp. 17-28 ◽  
Author(s):  
N. V. Krakhmal ◽  
M. V. Zavyalova ◽  
E. V. Denisov ◽  
S. V. Vtorushin ◽  
V. M. Perelmuter

Cancer invasion and the ability of malignant tumor cells for directed migration and metastasis have remained a focus of research for many years. Numerous studies have confirmed the existence of two main patterns of cancer cell invasion: collective cell migration and individual cell migration, by which tumor cells overcome barriers of the extracellular matrix and spread into surrounding tissues. Each pattern of cell migration displays specific morphological features and the biochemical/molecular genetic mechanisms underlying cell migration. Two types of migrating tumor cells, mesenchymal (fibroblast-like) and amoeboid, are observed in each pattern of cancer cell invasion. This review describes the key differences between the variants of cancer cell migration, the role of epithelial-mesenchymal, collective-amoeboid, mesenchymal-amoeboid, and amoeboid-mesenchymal transitions, as well as the significance of different tumor factors and stromal molecules in tumor invasion. The data and facts collected are essential to the understanding of how the patterns of cancer cell invasion are related to cancer progression and therapy efficacy. Convincing evidence is provided that morphological manifestations of the invasion patterns are characterized by a variety of tissue (tumor) structures. The results of our own studies are presented to show the association of breast cancer progression with intratumoral morphological heterogeneity, which most likely reflects the types of cancer cell migration and results from different activities of cell adhesion molecules in tumor cells of distinct morphological structures.


2014 ◽  
Vol 24 (3) ◽  
pp. 437-443 ◽  
Author(s):  
Jie Li ◽  
Geng Cui ◽  
Lu Sun ◽  
Shu-Juan Wang ◽  
Shuang Tian ◽  
...  

ObjectiveARHIis a maternally imprinted tumor suppressor gene that is responsible for initiating programmed cell death and inhibiting cancer cell growth. However, the influence ofARHIon epithelial ovarian cancer cell death and the underlying mechanisms behind howARHIregulates cancer cells still require further studies.MethodsEpithelial ovarian cancer cells TOV112D and ES-2 were used in this in vitro study. Cell proliferation, apoptosis, and autophagy activities were compared in TOV112D and ES-2 cells transfected withARHIvectors or control vectors. Bcl-2 siRNA was transfected into TOV112D cells to investigate the roles of Bcl-2 played in regulating apoptosis and autophagy.ResultsARHIexpression was reduced in TOV112D and ES-2 cells compared with normal epithelial ovarian cells (NOE095 and HOSEpiC). OverexpressedARHIinhibited cancer cell proliferation, whereas induced forced cell apoptosis and excessive formation of autophagosomes inhibited promoted cell death. Furthermore, we found that Bcl-2 expression moderately declined in response toARHIoverexpressing in ES-2 and TOV112D cells; meanwhile, more apoptotic cells and higher LC3 level presented after silence of Bcl-2 in TOV112D cells. Reduced Bcl-2–Beclin 1 complex were observed inARHIoverexpressing cells. Moreover, modulation ofARHIto Bcl-2 expression could be ascribed partially to the activation of PI3k/AKT pathway. The addition of LY294002 enabled to suppress Bcl-2 expression and cell proliferation.ConclusionsThe silence ofARHIexpression in vitro seems to accelerate the malignant transformation of healthy ovarian cells by restraining apoptosis and autophagy. The overexpressedARHIin TOV112D cancer cells suppresses the activation of PI3K/AKT and reduces the expression of Bcl-2, leading to enhanced cell apoptosis and autophagic cancer cell death.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Haoran Lu ◽  
Baofu Yao ◽  
Xinyuan Wen ◽  
Baoqing Jia

Abstract Backgrounds A number of circular RNAs (circRNAs) have been identified in various cancer including F-box and WD repeat domain containing 7 (FBXW7) circular RNA (circ-FBXW7), which can suppress glioma cell growth. However, the role of circ-FBXW7 in colorectal cancer (CRC) remains unclear. We aimed to investigate the effect and mechanisms of circ-FBXW7 on CRC progression. Methods The expression of circ-FBXW7 in CRC patients was detected by PCR. Stably knockdown of circ-FBXW7 (si circ-FBXW7) cell lines and overexpression of circ-FBXW7 (oe circ-FBXW7) cell lines were constructed by small interfering RNA method and plasmids transfection in CRC SW480 and SW620 cells. The functional experiments including cell proliferation, migration and invasion were carried out by cell counting kit-8 (CCK-8) assay, wound healing assay and trans well assay. The xenograft animal models were established to evaluate the effect and the underlying molecular mechanisms of circ-FBXW7 on CRC progression. Results CRC samples had a significantly lower level of circ-FBXW7 compared to normal tissue. si circ-FBXW7 notably promoted the proliferation, colony formation, cell migration and invasion of CRC cell in vitro. On contrast, circ-FBXW7 overexpressed significantly suppressed CRC cell proliferation, migration and invasion. Similarly, si circ-FBXW7 stimulated the tumor growth and circ-FBXW7 overexpression repressed the tumor progression in SW480 and SW620 tumor models, which suggested that circ-FBXW7 could serve as a target biomarker of CRC. Further study found that si circ-FBXW7 up-regulated the mRNA and protein expressions of NEK2 and mTOR, and diminished the PTEN expression. Whereas, overexpressed circ-FBXW7 induced the tumor suppression via reversing the expressions of NEK2, mTOR, and PTEN. Conclusion circ-FBXW7 plays a major role in controlling the progression of CRC through NEK2, mTOR, and PTEN signaling pathways and may be a potential therapeutic target for CRC treatment. Graphical abstract Circ-FBXW7 controls the progression of CRC through NEK2, mTOR, and PTEN signaling pathways and its overexpression inhibits colorectal cancer cell migration and invasion, suggesting the potential therapeutic target for CRC treatment.


Sign in / Sign up

Export Citation Format

Share Document