scholarly journals Xylose fermentation to ethanol by newGalactomyces geotrichumandCandida akabanensisstrains

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4673 ◽  
Author(s):  
Raquel V. Valinhas ◽  
Lílian A. Pantoja ◽  
Ana Carolina F. Maia ◽  
Maria Gabriela C.P. Miguel ◽  
Ana Paula F.C. Vanzela ◽  
...  

The conversion of pentoses into ethanol remains a challenge and could increase the supply of second-generation biofuels. This study sought to isolate naturally occurring yeasts from plant biomass and determine their capabilities for transforming xylose into ethanol. Three yeast strains with the ability to ferment xylose were isolated from pepper, tomato and sugarcane bagasse. The strains selected were characterized by morphological and auxanographic assays, and they were identified by homology analysis of 5.8 S and 26 S ribosomal RNA gene sequences. The identities of two lineages of microrganism were associated withGalactomyces geotrichum, and the other was associated withCandida akabanensis. Fermentative processes were conducted with liquid media containing only xylose as the carbon source. YP/Svalues for the production of ethanol ranging between 0.29 and 0.35 g g−1were observed under non-optimized conditions.

2018 ◽  
Author(s):  
Raquel V Valinhas ◽  
Lílian A Pantoja ◽  
Ana Carolina F Maia ◽  
Maria Gabriela C P Miguel ◽  
Ana Paula F C Vanzela ◽  
...  

The conversion of pentoses into ethanol remains a challenge and could increase the supply of second-generation biofuels. This study sought to isolate naturally occurring yeasts from plant biomass and determine their capabilities for transforming xylose into ethanol. Three yeast strains with the ability to ferment xylose were isolated from pepper, tomato and sugarcane bagasse. The strains selected were characterized by morphological and auxanographic assays, and they were identified by homology analysis of 5.8S and 26S ribosomal RNA gene sequences. The identities of two lineages of microrganism were associated with Galactomyces geotrichum, and the other was associated with Candida akabanensis. Fermentative processes were conducted with liquid media containing only xylose as the carbon source. YP/S values for the production of ethanol ranging between 0.29 and 0.35 g g-1 were observed under non-optimized conditions.


2018 ◽  
Author(s):  
Raquel V Valinhas ◽  
Lílian A Pantoja ◽  
Ana Carolina F Maia ◽  
Maria Gabriela C P Miguel ◽  
Ana Paula F C Vanzela ◽  
...  

The conversion of pentoses into ethanol remains a challenge and could increase the supply of second-generation biofuels. This study sought to isolate naturally occurring yeasts from plant biomass and determine their capabilities for transforming xylose into ethanol. Three yeast strains with the ability to ferment xylose were isolated from pepper, tomato and sugarcane bagasse. The strains selected were characterized by morphological and auxanographic assays, and they were identified by homology analysis of 5.8S and 26S ribosomal RNA gene sequences. The identities of two lineages of microrganism were associated with Galactomyces geotrichum, and the other was associated with Candida akabanensis. Fermentative processes were conducted with liquid media containing only xylose as the carbon source. YP/S values for the production of ethanol ranging between 0.29 and 0.35 g g-1 were observed under non-optimized conditions.


1970 ◽  
Vol 119 (4) ◽  
pp. 699-706 ◽  
Author(s):  
Roger Johnson

Chromatography on methylated albumin–kieselguhr of RNA from Saccharomyces cerevisiae was used to separate stable RNA from a tenaciously bound DNA-like RNA fraction. The tenaciously bound RNA, which was eluted with a dilute solution of sodium dodecyl sulphate, was characterized as messenger-like RNA by its sedimentation behaviour, nucleotide composition, lack of methylated bases and labelling kinetics. Chromatography of purified ribosomal RNA indicated a minor contamination of the tenaciously bound fraction with ribosomal RNA. On the other hand, a large portion of pulse-labelled polyribosomal RNA from protoplasts of Saccharomyces cerevisiae was tenaciously bound to the columns. The `chase' of isotopic label from the messenger-like RNA was found to be retarded during inhibition of protein synthesis both by cycloheximide and by starvation for a carbon source.


2021 ◽  
Vol 95 ◽  
Author(s):  
B. Neov ◽  
G.P. Vasileva ◽  
G. Radoslavov ◽  
P. Hristov ◽  
D.T.J. Littlewood ◽  
...  

Abstract The aim of the study is to test a hypothesis for the phylogenetic relationships among mammalian hymenolepidid tapeworms, based on partial (D1–D3) nuclear 28S ribosomal RNA (rRNA) genes, by estimating new molecular phylogenies for the group based on partial mitochondrial cytochrome c oxidase I (COI) and nuclear 18S rRNA genes, as well as a combined analysis using all three genes. New sequences of COI and 18S rRNA genes were obtained for Coronacanthus integrus, C. magnihamatus, C. omissus, C. vassilevi, Ditestolepis diaphana, Lineolepis scutigera, Spasskylepis ovaluteri, Staphylocystis tiara, S. furcata, S. uncinata, Vaucherilepis trichophorus and Neoskrjabinolepis sp. The phylogenetic analyses confirmed the major clades identified by Haukisalmi et al. (Zoologica Scripta 39: 631–641, 2010): Ditestolepis clade, Hymenolepis clade, Rodentolepis clade and Arostrilepis clade. While the Ditestolepis clade is associated with soricids, the structure of the other three clades suggests multiple evolutionary events of host switching between shrews and rodents. Two of the present analyses (18S rRNA and COI genes) show that the basal relationships of the four mammalian clades are branching at the same polytomy with several hymenolepidids from birds (both terrestrial and aquatic). This may indicate a rapid radiation of the group, with multiple events of colonizations of mammalian hosts by avian parasites.


2021 ◽  
Vol 8 (3) ◽  
pp. 52
Author(s):  
Chanon Suntara ◽  
Anusorn Cherdthong ◽  
Metha Wanapat ◽  
Suthipong Uriyapongson ◽  
Vichai Leelavatcharamas ◽  
...  

Saccharomyces cerevisiae is a yeast strain often used to improve the feed quality of ruminants. However, S. cerevisiae has limited capacity to provide biomass when inoculated with carbon sources and a low ability to produce cellulase enzymes. Here, we hypothesized that yeast in the rumen produces a large amount of biomass and could release cellulase enzymes to break down fiber content. Therefore, the aim of this study was to screen, isolate and identify yeast from the rumen fluids of Holstein Friesian steers and measure the efficiency of biomass production and cellulase activity. A fermentation medium containing sugarcane molasses as a carbon source and urea as a nitrogen source was optimized. Two fistulated–crossbred Holstein Friesian steers averaging 350 ± 20 kg body weight were used to screen and isolate the ruminal yeast. Two experiments were designed: First, a 12 × 3 × 3 factorial was used in a completely randomized design to determine biomass and carboxymethyl cellulase activity. Factor A was the isolated yeast and S. cerevisiae. Factor B was sugarcane molasses (M) concentration. Factor C was urea (U) concentration. In the second experiment, potential yeasts were selected, identified, and analyzed for 7 × 4 factorial use in a completely randomized design. Factor A was the incubation times. Factor B was the isolated yeast strains, including codes H-Khon Kaen University (KKU) 20 (as P. kudriavzevii-KKU20), I-KKU20 (C. tropicalis-KKU20), and C-KKU20 (as Galactomyces sp.-KKU20). Isolation was imposed under aerobic conditions, resulting in a total of 11 different colonies. Two appearances of colonies including asymmetric colonies of isolated yeast (indicated as A, B, C, E, and J) and ovoid colonies (coded as D, F, G, H, I, and K) were noted. Isolated yeast from the rumen capable of providing a high amount of biomass when inoculant consisted of the molasses 15% + urea 3% (M15 + U3), molasses 25% + urea 1% (M25 + U1), molasses 25% + urea 3% (M25 + U3), and molasses 25% + urea 5% (M25 + U5) when compared to the other media solution (p < 0.01). In addition, 11 isolated biomass-producing yeasts were found in the media solution of M25 + U1. There were 4 isolates cellulase producing yeasts discovered in the media solution of M25 + U1 and M25 + U5 whereas molasses 5% + urea 1% (M5 + U1), molasses 5% + urea 3% (M5 + U3), molasses 5% + urea 5% (M5 + U5), molasses 15% + urea 1% (M15 + U1), molasses 15% + urea 3% (M5 + U3), and M25 + U3 were found with 2, 3, 1, 2, 1, and 2 isolates, respectively. Ruminal yeast strains H-KKU20, I-KKU20, and C-KKU20 were selected for their ability to produce biomass. Identification of isolates H-KKU20 and I-KKU20 revealed that those isolates belonged to Pichia kudriavzevii-KKU20 and Candida tropicalis-KKU20 while C-KKU20 was identified as Galactomyces sp.-KKU20. Two strains provided maximum cell growth: P. kudriavzevii-KKU20 (9.78 and 10.02 Log cell/mL) and C. tropicalis-KKU20 (9.53 and 9.6 Log cells/mL) at 60 and 72 h of incubation time, respectively. The highest ethanol production was observed in S. cerevisiae at 76.4, 77.8, 78.5, and 78.6 g/L at 36, 48, 60, and 72 h of incubation time, respectively (p < 0.01). The P. kudriavzevii-KKU20 yielded the least reducing sugar at about 30.6 and 29.8 g/L at 60 and 72 h of incubation time, respectively. The screening and isolation of yeasts from rumen fluids resulted in 11 different yeasts being obtained. The potential yeasts discovered in the rumen fluid of cattle were Pichia kudriavzevii-KKU20, Candida tropicalis-KKU20, and Galactomyces sp.-KKU20. P. kudriavzevii-KKU20 had higher results than the other yeasts in terms of biomass production, cellulase enzyme activity, and cell number.


1981 ◽  
Vol 59 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert A. Blanchette ◽  
John B. Sutherland ◽  
Don L. Crawford

The greenish-brown margin of discolored wood in three living silver maple trees, Acer saccharinum L., was examined by scanning electron microscopy and microbiological culture techniques. Micrographs of xylem vessels revealed filamentous structures; some of them appeared to be actinomycetous hyphae. Actinomycetes identified as Streptomyces parvullus Waksman & Gregory, S. sparsogenes Owen, Dietz & Camiener, and a third Streptomyces strain were isolated repeatedly from discolored wood of each tree. These isolates grew in liquid media in the presence of 0.1% (w/v) concentrations of several phenols. Although other phenols included in the test were not substantially degraded, p-hydroxybenzoic acid was utilized as a carbon source by S. parvullus. All three actinomycetes inhibited growth of selected wood-inhabiting fungi when paired on malt agar. When inoculated on sterilized sapwood and discolored wood from silver maple, the actinomycetes colonized vessel walls and occlusions, but were not observed to decay cell walls.


1982 ◽  
Vol 56 (1) ◽  
pp. 83-99
Author(s):  
G.G. Altmann ◽  
C.P. Leblond

An image analyser was used to measure the area of the nucleolus and its component parts in columnar cells at six levels of the jejunal epithelium, corresponding to stages in cell migration from crypt base to villus top. In columnar cells of crypt base, which function as stem cells for the epithelium, the nucleolus is large (3.1 micron2), irregular and reticulated. As cells migrate up the crypt, divide and differentiate, the nucleolus decreases in size (1.7 micron2) and becomes spherical, but remains reticulated. In the fully differentiated cells of the midvillus, however, the nucleolus becomes small (0.9 micron2) and compact. At the villus top, as the cells display early signs of degeneration, the nucleolus is further compacted (0.5 micron2). Most nucleolar components also decrease in size. Pars fibrosa (about 19% of the nucleolar area in crypt base) and pars granulosa (about 70%) decrease in proportion to the rest of the nucleolus, except in mid-villus and villus top where loss of pars granulosa predominates. In contrast, the total area of fibrillar centres remains constant (about 0.1 micron2), even though individual centres are small and numerous in crypt base, larger and fewer at higher levels, and they coalesce into a single structure in villus top. The other nucleolar components are also segregated into distinct, but adjacent, areas at this level. The changes in size and structure of the nucleolus taking place during the migration of columnar cells can be correlated with the maturation of the cells and the loss of their ability to synthesize ribosomal RNA.


1994 ◽  
Vol 14 (1) ◽  
pp. 501-508
Author(s):  
J J Bonner ◽  
C Ballou ◽  
D L Fackenthal

The heat shock transcription factor (HSF) is a trimer that binds to DNA containing inverted repeats of the sequence nGAAn. HSF can bind DNA with the sequence nGAAnnTTCn or with the sequence nTTCnnGAAn, with little preference for either sequence over the other. However, (nGAAnnTTCn)2 is considerably less active as a heat shock response element (HSE) than is (nTTCnnGAAn)2. The electrophoretic mobilities of DNA-protein complexes and chemical cross-linking between protein monomers indicate that the sequence (nGAAnnTTCn)2 is capable of binding a single HSF trimer. In contrast, the sequence with higher biological activity, (nTTCnnGAAn)2, is capable of binding two trimers. Thus, the ability of four-nGAAn-element HSEs to bind one or two trimers depends on the permutation with which the elements are presented. A survey of naturally occurring HSEs shows the sequence (nTTCnnGAAn)2 to be the more prevalent. We suggest that the greater ability of one permutation over the other to bind two HSF trimers accounts for the initial identification of the naturally occurring heat shock consensus sequence as a region of dyad symmetry.


2003 ◽  
Vol 81 (12) ◽  
pp. 1285-1292 ◽  
Author(s):  
Takefumi Hattori ◽  
Akira Ohta ◽  
Masayuki Itaya ◽  
Mikio Shimada

We have investigated growth of ectomycorrhizal (ECM) fungi (i.e., 55 strains of 32 species in 15 genera) on saturated (palmitate), monounsaturated (oleate), diunsaturated (linoleate), triunsaturated (linolenate) fatty acids, and the triacylglyceride of oleate (triolein) lipid to elucidate an ability to utilize the fatty acids and lipid as a carbon source for growth. Relative utilization ratios (URs, %) based on mycelial growth on glucose suggest that ECM fungi belonging to the family Thelephoraceae have an ability to utilize palmitate. On the other hand, ECM fungi in the genus Laccaria can utilize at least either palmitate or oleate. Furthermore, Hygropharus russula grows on palmitate, oleate, and slightly on triolein. Lactarius chrysorrheus grows only on palmitate. These fatty-acid- and lipid-utilizing fungi may be promising as model fungi for further elucidation of the metabolic ability to utilize the fatty acids and lipid as a carbon source. On the contrary, the fungi in the genus Suillus were shown to scarcely utilize the fatty acids and lipid. Furthermore, most ECM fungi did not grow on either linoleate or linolenate.Key words: carbon source, ectomycorrhizal fungi, fatty acid, lipid, mycelial growth.


2011 ◽  
Vol 14 (2) ◽  
pp. 264 ◽  
Author(s):  
Ali Aghazadeh-Habashi ◽  
Fakhreddin Jamali

Glucosamine (GlcN) is a naturally occurring aminosugar that is widely used to treat osteoarthritis despite controversial clinical trial results. Animal studies, on the other hand, unequivocally suggest anti-inflammatory and disease modifying effects for GlcN. Many explanations have been offered as to the root of the controversy. They include superiority of a crystalline sulphate salt over HCl, industry bias, insensitive assessment metrics and poor methodology. Herein, we rule out a difference in bioequivalence between GlcN salts and that of chemically equivalent doses and suggest additional factors; i.e., inconsistency in the chemical potency of some products used, under-dosing of patients as well as variable and erratic bioavailability indices for the lack of GlcN efficacy observed in some studies. Clinical trials using higher doses of pharmaceutical grade GlcN or formulations with greater bioavailability should yield positive results. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Sign in / Sign up

Export Citation Format

Share Document