scholarly journals Modeling the spatial structure of the endemic mara (Dolichotis patagonum) across modified landscapes

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6367 ◽  
Author(s):  
Milagros Antún ◽  
Ricardo Baldi

Across modified landscapes, anthropic factors can affect habitat selection by animals and consequently their abundance and distribution patterns. The study of the spatial structure of wild populations is crucial to gain knowledge on species’ response to habitat quality, and a key for the design and implementation of conservation actions. This is particularly important for a low-density and widely distributed species such as the mara (Dolichotis patagonum), a large rodent endemic to Argentina across the Monte and Patagonian drylands where extensive sheep ranching predominates. We aimed to assess the spatial variation in the abundance of maras and to identify the natural and anthropic factors influencing the observed patterns in Península Valdés, a representative landscape of Patagonia. We conducted ground surveys during the austral autumn from 2015 to 2017. We built density surface models to account for the variation in mara abundance, and obtained a map of mara density at a resolution of four km2. We estimated an overall density of 0.93 maras.km−2 for the prediction area of 3,476 km2. The location of ranch buildings, indicators of human presence, had a strong positive effect on the abundance of maras, while the significant contribution of the geographic longitude suggested that mara density increases with higher rainfall. Although human presence favored mara abundance, presumably by providing protection against predators, it is likely that the association could bring negative consequences for maras and other species. The use of spatial models allowed us to provide the first estimate of mara abundance at a landscape scale and its spatial variation at a high resolution. Our approach can contribute to the assessment of mara population abundance and the factors shaping its spatial structure elsewhere across the species range, all crucial attributes to identify and prioritize conservation actions.

2018 ◽  
Author(s):  
Milagros Antun ◽  
Ricardo Baldi

Across modified landscapes anthropic factors can affect habitat selection by animals and consequently their abundance and distribution patterns. The study of the spatial structure of wild populations is crucial to gain knowledge on species’ response to habitat quality, and a key for the design and implementation of conservation actions. This is particularly important for a low-density and widely distributed species such as the mara (Dolichotis patagonum), a large rodent endemic of Argentina across the Monte and Patagonian drylands where extensive sheep ranching predominates. We aimed to assess the spatial variation in the abundance of maras and to identify the natural and anthropic factors influencing the observed patterns in Península Valdés, a representative landscape of Patagonia. We conducted ground surveys during the austral autumn from 2015 to 2017. We built density surface models to account for the variation in mara abundance, and obtained a map of mara density at a resolution of 4 km2. We estimated an overall density of 0.93 maras.km-2 for the prediction area of 3476 km2. The location of ranch buildings, indicators of human presence, had a strong positive effect on the abundance of maras, while the significant contribution of the geographic longitude suggested that mara density increases with higher rainfall. Although human presence favored mara abundance, presumably by providing protection against predators, it is likely that the association could bring negative consequences for maras and other species. The use of spatial models allowed us to provide the first estimate of mara abundance at a landscape scale and its spatial variation at a high resolution. Our approach can contribute to the assessment of mara population abundance and the factors shaping its spatial structure elsewhere across the species range, all crucial attributes to identify and prioritize conservation actions.


2018 ◽  
Author(s):  
Milagros Antun ◽  
Ricardo Baldi

Across modified landscapes anthropic factors can affect habitat selection by animals and consequently their abundance and distribution patterns. The study of the spatial structure of wild populations is crucial to gain knowledge on species’ response to habitat quality, and a key for the design and implementation of conservation actions. This is particularly important for a low-density and widely distributed species such as the mara (Dolichotis patagonum), a large rodent endemic of Argentina across the Monte and Patagonian drylands where extensive sheep ranching predominates. We aimed to assess the spatial variation in the abundance of maras and to identify the natural and anthropic factors influencing the observed patterns in Península Valdés, a representative landscape of Patagonia. We conducted ground surveys during the austral autumn from 2015 to 2017. We built density surface models to account for the variation in mara abundance, and obtained a map of mara density at a resolution of 4 km2. We estimated an overall density of 0.93 maras.km-2 for the prediction area of 3476 km2. The location of ranch buildings, indicators of human presence, had a strong positive effect on the abundance of maras, while the significant contribution of the geographic longitude suggested that mara density increases with higher rainfall. Although human presence favored mara abundance, presumably by providing protection against predators, it is likely that the association could bring negative consequences for maras and other species. The use of spatial models allowed us to provide the first estimate of mara abundance at a landscape scale and its spatial variation at a high resolution. Our approach can contribute to the assessment of mara population abundance and the factors shaping its spatial structure elsewhere across the species range, all crucial attributes to identify and prioritize conservation actions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. K. Ettinger ◽  
E. R. Buhle ◽  
B. E. Feist ◽  
E. Howe ◽  
J. A. Spromberg ◽  
...  

AbstractUrbanization-driven landscape changes are harmful to many species. Negative effects can be mitigated through habitat preservation and restoration, but it is often difficult to prioritize these conservation actions. This is due, in part, to the scarcity of species response data, which limit the predictive accuracy of modeling to estimate critical thresholds for biological decline and recovery. To address these challenges, we quantify effort required for restoration, in combination with a clear conservation objective and associated metric (e.g., habitat for focal organisms). We develop and apply this framework to coho salmon (Oncorhynchus kisutch), a highly migratory and culturally iconic species in western North America that is particularly sensitive to urbanization. We examine how uncertainty in biological parameters may alter locations prioritized for conservation action and compare this to the effect of shifting to a different conservation metric (e.g., a different focal salmon species). Our approach prioritized suburban areas (those with intermediate urbanization effects) for preservation and restoration action to benefit coho. We found that prioritization was most sensitive to the selected metric, rather than the level of uncertainty or critical threshold values. Our analyses highlight the importance of identifying metrics that are well-aligned with intended outcomes.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
J. Santiago Mejia ◽  
Erik N. Arthun ◽  
Richard G. Titus

One approach to identify epitopes that could be used in the design of vaccines to control several arthropod-borne diseases simultaneously is to look for common structural features in the secretome of the pathogens that cause them. Using a novel bioinformatics technique, cysteine-abundance and distribution analysis, we found that many different proteins secreted by several arthropod-borne pathogens, includingPlasmodium falciparum, Borrelia burgdorferi, and eight species of Proteobacteria, are devoid of cysteine residues. The identification of three cysteine-abundance and distribution patterns in several families of proteins secreted by pathogenic and nonpathogenic Proteobacteria, and not found when the amino acid analyzed was tryptophan, provides evidence of forces restricting the content of cysteine residues in microbial proteins during evolution. We discuss these findings in the context of protein structure and function, antigenicity and immunogenicity, and host-parasite relationships.


2013 ◽  
Vol 10 (6) ◽  
pp. 4009-4036 ◽  
Author(s):  
A. Braga-Henriques ◽  
F. M. Porteiro ◽  
P. A. Ribeiro ◽  
V. de Matos ◽  
Í. Sampaio ◽  
...  

Abstract. Cold-water corals are widely considered as important structural components of benthic habitats, potentially enhancing local abundance in a variety of fish and invertebrate species. Yet, current knowledge of the taxonomic diversity and distribution patterns of these vulnerable, slow-growing organisms is scarce and fragmented, limiting the effectiveness of spatial management and conservation measures. We have conducted an exhaustive compilation of records of alcyonaceans, antipatharians, scleractinians and stylasterids available through present day to assess the diversity, distribution and spatial structure of coral assemblages in the Azores exclusive economic zone (EEZ). The resulting database comprises 2501 entries concerning historical oceanographic expeditions and other published sources, as well as unpublished data from bottom longline by-catch. Our taxonomic inventory appears to be fairly complete for the explored habitats, accounting for 164 species (79 alcyonaceans, 58 scleractinians, 18 antipatharians and 9 stylasterids), nine of which were documented for the first time. The Azores EEZ harbours a mixed coral fauna with several zoogeographic origins, showing the closest affinity with the Lusitanian–Mediterranean region. Very few apparent endemics were found (14%), and only in part supported by consistent sampling. Coral diversity is particularly high between 300 and 900 m depths, in areas recognized as traditional fishing grounds or exploitable fish habitat within the 100-mile limit of the EEZ. The composition of coral assemblages shows significant geographical structure among longitudinal sections of the study area at comparable depths (100–1500 m). There is no evidence of a possible role of the Mid-Atlantic Ridge or latitudinal effects underlying this pattern, which suggests that it may instead reflect assemblage variability among features. Stronger changes in species composition were found along the bathymetric gradient. Notwithstanding the mix of partially overlapping steno- and eurybathic species that characterize the vertical distribution of corals, there is a distinct transition from shallow (100–600 m) to intermediate (600–1000 m) depths. The analysis presented here constitutes a valuable contribution for efficient conservation policies of coral-associated vulnerable marine ecosystems and their sustainable use as fishing areas.


2018 ◽  
Vol 9 (2) ◽  
pp. 402-414 ◽  
Author(s):  
Max Post van der Burg ◽  
Neil Chartier ◽  
Ryan Drum

Abstract “Strategic habitat conservation” refers to a process used by the U.S. Fish and Wildlife Service to develop cost-efficient strategies for conserving wildlife populations and their habitats. Strategic habitat conservation focuses on resolving uncertainties surrounding habitat conservation to meet specific wildlife population objectives (i.e., targets) and developing tools to guide where conservation actions should be focused on the landscape. Although there are examples of using optimization models to highlight where conservation should be delivered, such methods often do not explicitly account for spatial variation in the costs of conservation actions. Furthermore, many planning approaches assume that habitat protection is a preferred option, but they do not assess its value relative to other actions, such as restoration. We developed a case study to assess the implications of accounting for and ignoring spatial variation in conservation costs in optimizing conservation targets. We included assumptions about habitat loss to determine the extent to which protection or restoration would be necessary to meet an established population target. Our case study focused on optimal placement of grassland protection or restoration actions to influence bobolink Dolichonyx oryzivorus populations in the tallgrass prairie ecoregion of the north central United States. Our results show that not accounting for spatially variable costs doubled or tripled the cost of meeting the population target. Furthermore, our results suggest that one should not assume that protecting existing habitat is always a preferred option. Rather, our results show that the balance between protection and restoration can be influenced by a combination of desired targets, assumptions about habitat loss, and the relative cost of the two actions. Our analysis also points out how difficult it may be to reach targets, given the expense to meet them. We suggest that a full accounting of expected costs and benefits will help to guide development of viable management actions and meaningful conservation plans.


Spatial models of the β - structures of protein molecules, forming layers of amino acids, in principle, of unlimited length for both antiparallel and parallel conformation have been constructed. It is shown that the simplified flat Pauling models do not reflect the spatial structure of these layers. Using the recently developed theory of higher-dimensional polytopic prismahedrons, models of the volumetric filling of space with amino acid molecules are constructed. The constructed models for the first time mathematically describe the native structures of globular proteins.


2019 ◽  
Vol 132 (12) ◽  
pp. 3277-3293 ◽  
Author(s):  
Maria Lie Selle ◽  
Ingelin Steinsland ◽  
John M. Hickey ◽  
Gregor Gorjanc

Abstract Key message Established spatial models improve the analysis of agricultural field trials with or without genomic data and can be fitted with the open-source R package INLA. Abstract The objective of this paper was to fit different established spatial models for analysing agricultural field trials using the open-source R package INLA. Spatial variation is common in field trials, and accounting for it increases the accuracy of estimated genetic effects. However, this is still hindered by the lack of available software implementations. We compare some established spatial models and show possibilities for flexible modelling with respect to field trial design and joint modelling over multiple years and locations. We use a Bayesian framework and for statistical inference the integrated nested Laplace approximations (INLA) implemented in the R package INLA. The spatial models we use are the well-known independent row and column effects, separable first-order autoregressive ($$\mathrm{AR1} \otimes \mathrm{AR1}$$ AR 1 ⊗ AR 1 ) models and a Gaussian random field (Matérn) model that is approximated via the stochastic partial differential equation approach. The Matérn model can accommodate flexible field trial designs and yields interpretable parameters. We test the models in a simulation study imitating a wheat breeding programme with different levels of spatial variation, with and without genome-wide markers and with combining data over two locations, modelling spatial and genetic effects jointly. The results show comparable predictive performance for both the $$\mathrm{AR1} \otimes \mathrm{AR1}$$ AR 1 ⊗ AR 1 and the Matérn models. We also present an example of fitting the models to a real wheat breeding data and simulated tree breeding data with the Nelder wheel design to show the flexibility of the Matérn model and the R package INLA.


2020 ◽  
Vol 193 (3) ◽  
pp. 275-283
Author(s):  
Miguel Saigo ◽  
Mercedes Marchese ◽  
Luciana Montalto

Metacommunity theory is a mechanistic framework that explains the interdependence of local factors and regional processes as community drivers. Recent evidence suggests that dispersal mode is a key trait that potentially affects metacommunity dynamics. We analyzed the distribution patterns of benthic macroinvertebrates with different dispersal modes in the Middle Paraná, a neotropical large river. We assessed the relative importance of local environmental conditions and regional spatial structure as assemblage drivers. Aquatic and aerial dispersers presented Clementsian and Gleasonian structures, respectively. For both groups, local environmental conditions influenced community assembly, and spatial structure (overland distances) also affected the distribution of aerial dispersers. Our study highlights that the role of spatial structure as a driver of benthic metacommunities depends on species' dispersal modes. Aerial dispersers responded to regional spatial variables and it is likely that these organisms are also influenced by mass effects. Our results are consistent with current ideas of metacommunity dynamics in large rivers, where dispersal is not considered to limit the distribution of benthic organisms.


Paleobiology ◽  
1976 ◽  
Vol 2 (2) ◽  
pp. 99-121 ◽  
Author(s):  
Nancy G. Maynard

The number of diatom valves and fragments per gram of surface sediment in the Atlantic Ocean accurately reflects diatom abundance in the overlying waters, without any evidence of significant lateral drift during settling to the sea bottom. The distribution pattern of the number of resting spores per gram is similar to that for the whole and fragmented diatom valves. Fresh water diatoms and opal phytoliths are abundant in the sediments off the west coast of Africa where they have been deposited by the Trade Winds.Despite the relatively small number of core tops analyzed, the abundance and distribution patterns of diatoms in the sediments exhibit striking similarities to the patterns of primary productivity, phosphates, and annual production of silica in suspension in surface waters. Areas with high phosphate values and primary productivity and, therefore, areas of upwelling can be inferred from the quantitative distribution of diatoms in the sediments. Q-mode factor analysis, based on the abundance of forty-two species in thirty-seven core tops, produced six diatom species assemblages whose distributions provide additional information on the positions of certain water masses and major currents.Since the data on the quantitative distribution of diatom valves as well as on the diatom assemblages in the sediments of the Atlantic Ocean today allow prediction of certain water mass characteristics and circulation patterns of the overlying waters, they therefore, permit the reconstruction of paleoceanographic circulation patterns in ancient Atlantic Oceans, using the diatom distribution in sediments from dated horizons.


Sign in / Sign up

Export Citation Format

Share Document