scholarly journals Comprehensive analysis of an lncRNA-miRNA-mRNA competing endogenous RNA network in pulpitis

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7135 ◽  
Author(s):  
Fangcao Lei ◽  
Han Zhang ◽  
Xiaoli Xie

Background Pulpitis is a common inflammatory disease that affects dental pulp. It is important to understand the molecular signals of inflammation and repair associated with this process. Increasing evidence has revealed that long noncoding RNAs (lncRNAs), via competitively sponging microRNAs (miRNAs), can act as competing endogenous RNAs (ceRNAs) to regulate inflammation and reparative responses. The aim of this study was to elucidate the potential roles of lncRNA, miRNA and messenger RNA (mRNA) ceRNA networks in pulpitis tissues compared to normal control tissues. Methods The oligo and limma packages were used to identify differentially expressed lncRNAs and mRNAs (DElncRNAs and DEmRNAs, respectively) based on expression profiles in two datasets, GSE92681 and GSE77459, from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were further analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein–protein interaction (PPI) networks and modules were established to screen hub genes using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and the Molecular Complex Detection (MCODE) plugin for Cytoscape, respectively. Furthermore, an lncRNA-miRNA-mRNA-hub genes regulatory network was constructed to investigate mechanisms related to the progression and prognosis of pulpitis. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify critical lncRNAs that may significantly affect the pathogenesis in inflamed and normal human dental pulp. Results A total of 644 upregulated and 264 downregulated differentially expressed genes (DEGs) in pulpitis samples were identified from the GSE77459 dataset, while 8 up- and 19 downregulated probes associated with lncRNA were identified from the GSE92681 dataset. Protein–protein interaction (PPI) based on STRING analysis revealed a network of DEGs containing 4,929 edges and 623 nodes. Upon combined analysis of the constructed PPI network and the MCODE results, 10 hub genes, including IL6, IL8, PTPRC, IL1B, TLR2, ITGAM, CCL2, PIK3CG, ICAM1, and PIK3CD, were detected in the network. Next, a ceRNA regulatory relationship consisting of one lncRNA (PVT1), one miRNA (hsa-miR-455-5p) and two mRNAs (SOCS3 and PLXNC1) was established. Then, we constructed the network in which the regulatory relationship between ceRNA and hub genes was summarized. Finally, our qRT-PCR results confirmed significantly higher levels of PVT1 transcript in inflamed pulp than in normal pulp tissues (p = 0.03). Conclusion Our study identified a novel lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of pulpitis.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Binfeng Liu ◽  
Ang Li ◽  
Hongbo Wang ◽  
Jialin Wang ◽  
Gongwei Zhai ◽  
...  

The Corneal wound healing results in the formation of opaque corneal scar. In fact, millions of people around the world suffer from corneal scars, leading to loss of vision. This study aimed to identify the key changes of gene expression in the formation of opaque corneal scar and provided potential biomarker candidates for clinical treatment and drug target discovery. We downloaded Gene expression dataset GSE6676 from NCBI-GEO, and analyzed the Differentially Expressed Genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, and protein-protein interaction (PPI) network. A total of 1377 differentially expressed genes were identified and the result of Functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) identification and protein-protein interaction (PPI) networks were performed. In total, 7 hub genes IL6 (interleukin-6), MMP9 (matrix metallopeptidase 9), CXCL10 (C-X-C motif chemokine ligand 10), MAPK8 (mitogen-activated protein kinase 8), TLR4 (toll-like receptor 4), HGF (hepatocyte growth factor), EDN1 (endothelin 1) were selected. In conclusion, the DEGS, Hub genes and signal pathways identified in this study can help us understand the molecular mechanism of corneal scar formation and provide candidate targets for the diagnosis and treatment of corneal scar.


2020 ◽  
Author(s):  
Yanjie Han ◽  
Xinxin Li ◽  
Jiliang Yan ◽  
Chunyan Ma ◽  
Xin Wang ◽  
...  

Abstract Background: Melanoma is the most deadly tumor in skin tumors and is prone to distant metastases. The incidence of melanoma has increased rapidly in the past few decades, and current trends indicate that this growth is continuing. This study was aimed to explore the molecular mechanisms of melanoma pathogenesis and discover underlying pathways and genes associated with melanoma.Methods: We used high-throughput expression data to study differential expression profiles of related genes in melanoma. The differentially expressed genes (DEGs) of melanoma in GSE15605, GSE46517, GSE7553 and the Cancer Genome Atlas (TCGA) datasets were analyzed. Differentially expressed genes (DEGs) were identified by paired t-test. Then the DEGs were performed cluster and principal component analyses and protein–protein interaction (PPI) network construction. After that, we analyzed the differential genes through bioinformatics and got hub genes. Finally, the expression of hub genes was confirmed in the TCGA databases and collected patient tissue samples.Results: Total 144 up-regulated DEGs and 16 down-regulated DEGs were identified. A total of 17 gene ontology analysis (GO) terms and 11 pathways were closely related to melanoma. Pathway of pathways in cancer was enriched in 8 DEGs, such as junction plakoglobin (JUP) and epidermal growth factor receptor (EGFR). In the PPI networks, 9 hub genes were obtained, such as loricrin (LOR), filaggrin (FLG), keratin 5 (KRT5), corneodesmosin (CDSN), desmoglein 1 (DSG1), desmoglein 3 (DSG3), keratin 1 (KRT1), involucrin (IVL) and EGFR. The pathway of pathways in cancer and its enriched DEGs may play important roles in the process of melanoma. The hub genes of DEGs may become promising melanoma candidate genes. Five key genes FLG, DSG1, DSG3, IVL and EGFR were identified in the TCGA database and melanoma tissues.Conclusions: The results suggested that FLG, DSG1, DSG3, IVL and EGFR might play important roles and potentially be valuable in the prognosis and treatment of melanoma.


2015 ◽  
Vol 4 (4) ◽  
pp. 35-51 ◽  
Author(s):  
Bandana Barman ◽  
Anirban Mukhopadhyay

Identification of protein interaction network is very important to find the cell signaling pathway for a particular disease. The authors have found the differentially expressed genes between two sample groups of HIV-1. Samples are wild type HIV-1 Vpr and HIV-1 mutant Vpr. They did statistical t-test and found false discovery rate (FDR) to identify the genes increased in expression (up-regulated) or decreased in expression (down-regulated). In the test, the authors have computed q-values of test to identify minimum FDR which occurs. As a result they found 172 differentially expressed genes between their sample wild type HIV-1 Vpr and HIV-1 mutant Vpr, R80A. They found 68 up-regulated genes and 104 down-regulated genes. From the 172 differentially expressed genes the authors found protein-protein interaction network with string-db and then clustered (subnetworks) the PPI networks with cytoscape3.0. Lastly, the authors studied significance of subnetworks with performing gene ontology and also studied the KEGG pathway of those subnetworks.


2021 ◽  
Author(s):  
Yuxuan HUANG ◽  
Ge CUI

Abstract Aims: To utilize the bioinformatics to analyze the differentially expressed genes (DEGs), interaction proteins, perform gene enrichment analysis, protein-protein interaction network (PPI) and map the hub genes between colorectal cancer(CRC) and colorectal adenocarcinomas(CA).Methods: We analyzed a microarray dataset (GSE32323 and GSE4183) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in tumor tissues and non-cancerous tissues were identified using the dplyr and Venn diagram packages of the R Studio software. Functional annotation of the DEGs was performed using the Gene Ontology (GO) website. Pathway enrichment (KEGG) used the WebGestalt to analyze the data and R Studio to generate the graph. We constructed a protein–protein interaction (PPI) network of DEGs using STRING and Cytoscape software was used for visualization. Survival analysis of the hub genes and was performed using the online platform GEPIA to determine the prognostic value of the expression of hub genes in cell lines from CRC patients. The expression of molecules with prognostic values was validated on the UALCAN database. The expression of hub genes was examined using the Human Protein Atlas. Results: Applying the GEO2R analysis and R studio, we identified a total of 471 upregulated and 278 downregulated DEGs. By using the online database WebGestalt, we identified the most relevant biological networks involving DEGs with statistically significant differences in expression were mainly associated with biological processes involved in the cell proliferation, cell cycle transition, cell homeostasis and indicated the role of each DEGs in cell cycle regulation pathways. We found 10 hub genes with prognostic values were overexpressed in the CRC and CA samples.Conclusion: we found out ten hub genes and three core genes closely associated with the pathogenesis and prognosis of CRC and CA, which is of great significance for colorectal tumor early detection and prognosis evaluation.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ke-Ying Fang ◽  
Wen-Chao Cao ◽  
Tian-Ao Xie ◽  
Jie Lv ◽  
Jia-Xin Chen ◽  
...  

Abstract Background In the novel coronavirus pandemic, the high infection rate and high mortality have seriously affected people’s health and social order. To better explore the infection mechanism and treatment, the three-dimensional structure of human bronchus has been employed in a better in-depth study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods We downloaded a separate microarray from the Integrated Gene Expression System (GEO) on a human bronchial organoids sample to identify differentially expressed genes (DEGS) and analyzed it with R software. After processing with R software, Gene Ontology (GO) and Kyoto PBMCs of Genes and Genomes (KEGG) were analyzed, while a protein–protein interaction (PPI) network was constructed to show the interactions and influence relationships between these differential genes. Finally, the selected highly connected genes, which are called hub genes, were verified in CytoHubba plug-in. Results In this study, a total of 966 differentially expressed genes, including 490 upregulated genes and 476 downregulated genes were used. Analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways related to immune response and cytokines. We construct protein-protein interaction network and identify 10 hub genes, including IL6, MMP9, IL1B, CXCL8, ICAM1, FGF2, EGF, CXCL10, CCL2, CCL5, CXCL1, and FN1. Finally, with the help of GSE150728, we verified that CXCl1, CXCL8, CXCL10, CCL5, EGF differently expressed before and after SARS-CoV-2 infection in clinical patients. Conclusions In this study, we used mRNA expression data from GSE150819 to preliminarily confirm the feasibility of hBO as an in vitro model to further study the pathogenesis and potential treatment of COVID-19. Moreover, based on the mRNA differentiated expression of this model, we found that CXCL8, CXCL10, and EGF are hub genes in the process of SARS-COV-2 infection, and we emphasized their key roles in SARS-CoV-2 infection. And we also suggested that further study of these hub genes may be beneficial to treatment, prognostic prediction of COVID-19.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng Zhang ◽  
Bingye Zhang ◽  
Di Meng ◽  
Chunlin Ge

Abstract Background The incidence of cholangiocarcinoma (CCA) has risen in recent years, and it has become a significant health burden worldwide. However, the mechanisms underlying tumorigenesis and progression of this disease remain largely unknown. An increasing number of studies have demonstrated crucial biological functions of epigenetic modifications, especially DNA methylation, in CCA. The present study aimed to identify and analyze methylation-regulated differentially expressed genes (MeDEGs) involved in CCA tumorigenesis and progression by bioinformatics analysis. Methods The gene expression profiling dataset (GSE119336) and gene methylation profiling dataset (GSE38860) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified using the limma packages of R and GEO2R, respectively. The MeDEGs were obtained by overlapping the DEGs and DMGs. Functional enrichment analyses of these genes were then carried out. Protein–protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape to determine hub genes. Finally, the results were verified based on The Cancer Genome Atlas (TCGA) database. Results We identified 98 hypermethylated, downregulated genes and 93 hypomethylated, upregulated genes after overlapping the DEGs and DMGs. These genes were mainly enriched in the biological processes of the cell cycle, nuclear division, xenobiotic metabolism, drug catabolism, and negative regulation of proteolysis. The top nine hub genes of the PPI network were F2, AHSG, RRM2, AURKB, CCNA2, TOP2A, BIRC5, PLK1, and ASPM. Moreover, the expression and methylation status of the hub genes were significantly altered in TCGA. Conclusions Our study identified novel methylation-regulated differentially expressed genes (MeDEGs) and explored their related pathways and functions in CCA, which may provide novel insights into a further understanding of methylation-mediated regulatory mechanisms in CCA.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiaodong Sheng ◽  
Tao Fan ◽  
Xiaoqi Jin

Background. Acute myocardial infarction (AMI) is regarded as an urgent clinical entity, and identification of differentially expressed genes, lncRNAs, and altered pathways shall provide new insight into the molecular mechanisms behind AMI. Materials and Methods. Microarray data was collected to identify key genes and lncRNAs involved in AMI pathogenesis. The differential expression analysis and gene set enrichment analysis (GSEA) were employed to identify the upregulated and downregulated genes and pathways in AMI. The protein-protein interaction network and protein-RNA interaction analysis were utilized to reveal key long noncoding RNAs. Results. In the present study, we utilized gene expression profiles of circulating endothelial cells (CEC) from 49 patients of AMI and 50 controls and identified a total of 552 differentially expressed genes (DEGs). Based on these DEGs, we also observed that inflammatory response-related genes and pathways were highly upregulated in AMI. Mapping the DEGs to the protein-protein interaction (PPI) network and identifying the subnetworks, we found that OMD and WDFY3 were the hub nodes of two subnetworks with the highest connectivity, which were found to be involved in circadian rhythm and organ- or tissue-specific immune response. Furthermore, 23 lncRNAs were differentially expressed between AMI and control groups. Specifically, we identified some functional lncRNAs, including XIST and its antisense RNA, TSIX, and three lncRNAs (LINC00528, LINC00936, and LINC01001), which were predicted to be interacting with TLR2 and participate in Toll-like receptor signaling pathway. In addition, we also employed the MMPC algorithm to identify six gene signatures for AMI diagnosis. Particularly, the multivariable SVM model based on the six genes has achieved a satisfying performance ( AUC = 0.97 ). Conclusion. In conclusion, we have identified key regulatory lncRNAs implicated in AMI, which not only deepens our understanding of the lncRNA-related molecular mechanism of AMI but also provides computationally predicted regulatory lncRNAs for AMI researchers.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10395
Author(s):  
Haiyang Liu ◽  
Di Liu ◽  
Yexin Liu ◽  
Ming Xia ◽  
Yan Li ◽  
...  

Background Immunoglobulin A nephropathy (IgAN) is immune-mediated primary glomerulonephritis, which is the most common reason leading to renal failure worldwide. The exact pathogenesis of IgAN is not well defined. Accumulating evidence indicates that circular RNAs (circRNAs) play crucial roles in the immune disease by involving in the competing endogenous RNA (ceRNA) network mechanism. At present, the studies of the circRNA profiles and circRNA-associated ceRNA networks in the IgAN are still scarce. This study aimed to elucidate the potential roles of circRNA-associated ceRNA networks of peripheral blood mononuclear cells (PBMCs) in IgAN patients Method CircRNA sequencing was used to identify the differential expressed circRNAs (DEcircRNAs) of PBMCs in IgAN and healthy controls; limma packages from data sets GSE25590 and GSE73953 in the Gene Expression Omnibus (GEO) database, were used to identify differentially expressed micro RNAs (miRNAs) and message RNAs (mRNAs). A circRNA-miRNA-mRNA ceRNA network was constructed to further investigate the mechanisms of IgAN. Then, GO analysis and KEGG enrichment analyses were used to annotate the genes involved in the circRNA-associated ceRNA network. Further, Protein-protein interaction (PPI) networks were established to screen potential hub genes, by using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Last, a quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify the hub genes in the ceRNA network. Result A total of 145 circRNAs, 22 miRNAs, and 1,117 mRNAs were differentially expressed in IgAN compared with controls (P < 0.05). A ceRNA network was constructed which contained 16 DEcircRNAs, 72 differential expressed mRNAs (DEmRNAs) and 11 differential expressed miRNAs (DEmiRNAs). KEGG pathway enrichment analysis illustrated the underlying biological functions of the ceRNA-associated genes, such as Nitrogen compound metabolic process, COPII-coated ER to Golgi transport vesicle, CAMP response element protein binding process (P < 0.01); meanwhile, Hepatitis B, GnRH signaling, and Prion disease were the most significant enrichment GO terms (P < 0.01). PPI network based on STRING analysis identified 4 potentially hub genes. Finally, Ankyrin repeat and SOCS box containing 16 (ASB16), SEC24 homolog C, COPII coat complex component (SEC24C) were confirmed by qRT-PCR (P < 0.05) and were identified as the hub genes of the ceRNA network in our study. Conclusion Our study identified a novel circRNA-mediated ceRNA regulatory network mechanisms in the pathogenesis of IgAN.


2021 ◽  
Vol 20 ◽  
pp. 153303382098329
Author(s):  
Yujie Weng ◽  
Wei Liang ◽  
Yucheng Ji ◽  
Zhongxian Li ◽  
Rong Jia ◽  
...  

Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes ( CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.


2021 ◽  
Author(s):  
Feifei Liu ◽  
Yu Wang ◽  
Wenxue Li ◽  
Diancheng Li ◽  
Yuwei Xin ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies of the digestive system; the progression and prognosis of which are affected by a complicated network of genes and pathways. The aim of this study was to identify potential hub genes associated with the progression and prognosis of colorectal cancer (CRC).Methods: We obtained gene expression profiles from GEO database to search differentially expressed genes (DEGs) between CRC tissues and normal tissue. Subsequently, we conducted a functional enrichment analysis, generated a protein–protein interaction (PPI) network to identify the hub genes, and analyzed the expression validation of the hub genes. Kaplan–Meier plotter survival analysis tool was performed to evaluate the prognostic value of hub genes expression in CRC patients.Results: A total of 370 samples, involving CRC and normal tissues were enrolled in this article. 283 differentially expressed genes (DEGs), including 62 upregulated genes and 221 downregulated genes between CRC and normal tissues were selected. We finally filtered out 6 hub genes, including INSL5, MTIM, GCG, SPP1, HSD11B2, and MAOB. In the database of TCGA-COAD, the mRNA expression of INSL5, MT1M, HSD11B2, MAOB in tumor is lower than that in normal; the mRNA expression of SPP1 in tumor is higher than that in normal. In the HPA database, the expression of INSL5, GCG, HSD11B2, MAOB in tumor is lower than that in normal tissues; the expression of SPP1 in the tumor is higher than that in normal tissues. Survival analysis revealed that INSL5, GCG, SPP1 and MT1M may serve as prognostic biomarkers in CRC. Conclusions: We screened out six hub genes to predict the occurrence and prognosis of patients with CRC using bioinformatics methods, which may provide new targets and ideas for diagnosis, prognosis and individualized treatment for CRC.


Sign in / Sign up

Export Citation Format

Share Document