scholarly journals Ethyl pyruvate inhibits glioblastoma cells migration and invasion through modulation of NF-κB and ERK-mediated EMT

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9559
Author(s):  
Qing Huang ◽  
Yongming Fu ◽  
Shan Zhang ◽  
Youxiang Zhang ◽  
Simin Chen ◽  
...  

Background Glioblastoma is a grade IV glioma with the highest degree of malignancy and extremely high incidence. Because of the poor therapeutic effect of surgery and radiochemotherapy, glioblastoma has a high recurrence rate and lethality, and is one of the most challenging tumors in the field of oncology. Ethyl pyruvate (EP), a stable lipophilic pyruvic acid derivative, has anti-inflammatory, antioxidant, immunomodulatory and other cellular protective effects. It has been reported that EP has potent anti-tumor effects on many types of tumors, including pancreatic cancer, prostate cancer, liver cancer, gastric cancer. However, whether EP has anti-tumor effect on glioblastoma or not is still unclear. Methods Glioblastoma U87 and U251 cells were treated with different concentrations of EP for 24 h or 48 h. CCK8 assay and Colony-Formation assay were performed to test the viability and proliferation. Wound-healing assay and Transwell assay were carried out to measure cell invasion and migration. Western blot was not only used to detect the protein expression of epithelial-mesenchymal transition (EMT)-related molecules, but also to detect the expression and activation levels of NF-κB (p65) and Extracellular Signal Regulated Kinase (ERK). Results In glioblastoma U87 and U251 cells treated with EP, the viability, proliferation, migration, invasion abilities were inhibited in a dose-dependent manner. EP inhibited EMT and the activation of NF-κB (p65) and ERK. With NF-κB (p65) and ERK activated, EMT, migration and invasion of U87 and U251 cells were promoted. However the activation of NF-κB (p65) and ERK were decreased, EMT, migration and invasion abilities were inhibited in U87 and U251 cells treated with EP. Conclusion EP inhibits glioblastoma cells migration and invasion by blocking NF-κB and ERK-mediated EMT.

2018 ◽  
Vol 26 (7) ◽  
pp. 928-938 ◽  
Author(s):  
Huisheng Ge ◽  
Nanlin Yin ◽  
Ting-Li Han ◽  
Dongni Huang ◽  
Xuehai Chen ◽  
...  

Preeclampsia (PE) is a pregnancy-specific disorder representing a major cause of maternal and perinatal morbidity and mortality. Invasive and migratory phenotypes are acquired by trophoblasts through the process of epithelial–mesenchymal transition (EMT). Studies have shown that trophoblast EMT events are dysregulated in PE and play an important role in its development. Dysregulation of interleukin (IL)-27 and IL-27R (T-cell cytokine receptor (TCCR)/WSX -1) is relevant to PE. In this study, our results demonstrated that IL-27 did not significantly affect the proliferation and apoptosis of HTR -8/SVneo trophoblast cells, while it did significantly inhibit trophoblast invasion and migration. The expression of EMT-related proteins in HTR-8/SVneo cells and extravillous explants was detected after treatment with IL-27. Expression of epithelial markers was increased, and mesenchymal marker expression was reduced. Furthermore, we found that IL-27 could induce significant phosphorylation of Signal Transducer and Activator of Transcription 1 (STAT1) and Signal Transducer and Activator of Transcription 3 (STAT3) in a time-dependent manner in HTR-8/SVneo cells. Selective inhibitors of STAT1 (STAT1 siRNA) and STAT3 (STAT3 siRNA) were used to determine whether both STAT1 and STAT3 are required for IL-27-mediated inhibition of EMT. STAT1 inhibition in IL-27-treated cells attenuated the IL-27 effect, while the inhibition of STAT3 activation had no effect on the development of the epithelial phenotype. These results demonstrate that IL-27 may inhibit trophoblast cell migration and invasion by affecting the EMT process through an STAT1-dominant pathway in PE.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Kai Zhang ◽  
Tao Peng ◽  
Qingying Yan ◽  
Leitao Sun ◽  
Haojun Miao ◽  
...  

Jiedu Sangen Decoction (JSD), a traditional Chinese medicine (TCM) formula, has been widely used in China to treat gastrointestinal cancer, especially as an adjuvant therapy in colorectal cancer (CRC) patients. This study aimed to evaluate the efficacy of JSD and Jiedu Sangen aqueous extract (JSAE) in colon cancer cells and explored the underlining mechanisms by cytotoxicity assay, scratch assay, transwell migration assay, matrigel invasion assay, confocal laser scanning microscopy, and western blot analysis. We demonstrated that JSAE inhibited the growth of colon cancer SW480 cells in a dose-dependent manner and JSAE repressed cancer cell migration and invasion. Furthermore, epithelial mesenchymal transition (EMT) was reversed by JSAE via enhancing E-cadherin expression and attenuating protein levels of EMT promoting factors such as N-cadherin, Slug, and ZEB1. These findings provided the first experimental evidence confirming the efficacy of JSAE in repressing invasion and metastasis of CRC and paving a way for the broader use of JSD in clinic.


2020 ◽  
Vol 21 (5) ◽  
pp. 1827 ◽  
Author(s):  
Yahima Frión-Herrera ◽  
Daniela Gabbia ◽  
Michela Scaffidi ◽  
Letizia Zagni ◽  
Osmany Cuesta-Rubio ◽  
...  

The majority of deaths related to colorectal cancer (CRC) are associated with the metastatic process. Alternative therapeutic strategies, such as traditional folk remedies, deserve attention for their potential ability to attenuate the invasiveness of CRC cells. The aim of this study is to investigate the biological activity of brown Cuban propolis (CP) and its main component nemorosone (NEM) and to describe the molecular mechanism(s) by which they inhibit proliferation and metastatic potential of 2 CRC cell lines, i.e., HT-29 and LoVo. Our results show that CP and NEM significantly decreased cell viability and inhibited clonogenic capacity of CRC cells in a dose and time-dependent manner, by arresting the cell cycle in the G0/G1 phase and inducing apoptosis. Furthermore, CP and NEM downregulated BCL2 gene expression and upregulated the expression of the proapoptotic genes TP53 and BAX, with a consequent activation of caspase 3/7. They also attenuated cell migration and invasion by inhibiting MMP9 activity, increasing E-cadherin and decreasing β-catenin and vimentin expression, proteins involved in the epithelial–mesenchymal transition (EMT). In conclusion NEM, besides displaying antiproliferative activity on CRC cells, is able to decrease their metastatic potential by modulating EMT-related molecules. These finding provide new insight about the mechanism(s) of the antitumoral properties of CP, due to NEM content.


2020 ◽  
Vol 19 ◽  
pp. 153473542097248
Author(s):  
Feiyu Shan ◽  
Leitao Sun ◽  
Leyin Zhang ◽  
Kaibo Guo ◽  
Qingying Yan ◽  
...  

Background: Jiedu Sangen Decoction (JSD), a traditional Chinese medicine formula, has been widely applied in the treatment of gastrointestinal cancer, especially in colorectal cancer. Our study mainly aimed to assess the combined efficacy of Jiedu Sangen aqueous extract (JSAE) and a PD-L1 inhibitor (PI) in colon cancer cells migration and invasion, along with epithelial-mesenchymal transition, and then provide deep insights into the potential mechanism. Methods: We explored the inhibitory effects on invasion and metastasis and the reverse effect on EMT process in CT-26 colon cancer cell via Transwell migration assay, Matrigel invasion assay and confocal laser scanning microscopy. Furthermore, regulation in expression of EMT-related proteins and molecular biomarkers and underlying signal pathway proteins were detected through Western blotting and IHC. Results: The combination of JSD and PD-L1 inhibitor could inhibit migration, invasive ability and EMT of CT-26 cells in a concentration-dependent manner. Meanwhile, JSD combined with PD-L1 inhibitor could also remarkably reverse EMT and metastasis in vivo. In addition, the protein expression of N-cadherin, Slug, Snail, Vimentin was down-regulated along with E-cadherin s up-regulation with the combination of JSD and PD-L1 inhibitor, while that of PI3K/AKT was notably down-regulated. Conclusions: These findings indicated that JSAE and a PD-L1 inhibitor could drastically inhibit the migration and invasion of colorectal cancer by reversing EMT through the PI3K/AKT signaling pathway.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Aling Shen ◽  
Hongwei Chen ◽  
Youqin Chen ◽  
Jiumao Lin ◽  
Wei Lin ◽  
...  

The traditional Chinese medicine formula Pien Tze Huang (PZH) has long been used as a folk remedy for cancer. To elucidate the mode of action of PZH against cancer, in the present study we used a 5-FU resistant human colorectal carcinoma cell line (HCT-8/5-FU) to evaluate the effects of PZH on multidrug resistance (MDR) and epithelial-mesenchymal transition (EMT) as well as the activation of TGF-βpathway. We found that PZH dose-dependently inhibited the viability of HCT-8/5-FU cells which were insensitive to treatment of 5-FU and ADM, demonstrating the ability of PZH to overcome chemoresistance. Furthermore, PZH increased the intercellular accumulation of Rhodamine-123 and downregulated the expression of ABCG2 in HCT-8/5-FU cells. In addition, drug resistance induced the process of EMT in HCT-8 cells as evidenced by EMT-related morphological changes and alteration in the expression of EMT-regulatory factors, which however was neutralized by PZH treatment. Moreover, PZH inhibited MDR/EMT-enhanced migration and invasion capabilities of HCT-8 cells in a dose-dependent manner and suppressed MDR-induced activation of TGF-βsignaling in HCT-8/5-FU cells. Taken together, our study suggests that PZH can effectively overcome MDR and inhibit EMT in human colorectal carcinoma cells via suppression of the TGF-βpathway.


Author(s):  
Longchang Bai ◽  
Yingkang Ma ◽  
Xue Wang ◽  
Qiongni Feng ◽  
Zhining Zhang ◽  
...  

Polydatin, an active ingredient from the roots of Polygonum cuspidatum, is considered to have protective effects on the cardiovascular system and liver. In this study, we demonstrated that polydatin has antitumor activity against human cervical cancer. Polydatin efficiently inhibited cervical cancer cell proliferation by regulating cell cycle-related proteins including p21, p27, CDK2, CDK4, Cyclin D1, and Cyclin E1. Furthermore, polydatin suppressed cell invasion and migration by regulating epithelial–mesenchymal transition (EMT) markers, including E-cadherin, N-cadherin, Snail and Slug. The c-Myc, as a proto-oncogene, is considered to be closely associated with the proliferation and metastasis of tumor cells. After polydatin treatment, the protein expression of c-Myc showed a significant decrease. Based on these data, we overexpressed c-Myc in cervical cancer cells and observed that the overexpression of c-Myc rescued the inhibitory effect of polydatin on cell proliferation and metastasis. These results indicated that polydatin can inhibit cell proliferation and metastasis through suppressing the c-Myc expression in human cervical cancer.


2019 ◽  
Vol 60 (5-6) ◽  
pp. 208-218 ◽  
Author(s):  
Tao Xiao ◽  
Zhigang Jie

Background: Gastric cancer (GC) is one of the most common malignant tumors. It is likely to occur in lymph nodes and is prone to distant metastasis in its early stages, which portends a poor prognosis. Previous studies have shown that miRNA-21 was abnormally highly expressed and associated with early metastasis in GC, but the mechanism by which it regulates the invasion and metastasis of GC has not been elucidated. Methods: Epithelial-mesenchymal transition (EMT) is an important pathologic basis of tumor invasion and metastasis, and in this study, the relationship between miRNA-21 and EMT in GC invasion and metastasis was investigated using RT-qPCR, Western blot, and wound scratch and transwell assays. Results: We found that miRNA-21 expression in GC cell lines was higher than in a gastric mucosal epithelial cell line. After transfection with an miRNA-21 mimic, the upregulation of EMT was found to promote migration and invasion of MGC-803 cells. However, the downregulation of EMT was found to accompany the inhibition of invasion and migration of GC cells after downregulation of miRNA-21 expression due to the transfection of an miRNA-21 inhibitor. Conclusions: These findings suggest that miRNA-21 might promote the invasion and metastasis of GC by upregulating EMT.


Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 673-682 ◽  
Author(s):  
Hao Zhang ◽  
Zhihu Li

AbstractEpidemiological study has confirmed that PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) is associated with the incidence and progression of human hepatocellular carcinoma (HCC). Accordingly, this study was undertaken to investigate the pro-metastatic effects of PM2.5 on human HCC cell line SMMC-7721 in vitro and to explore the underlying mechanisms. CCK-8 assay was performed to examine the effect of PM2.5 on the proliferation of SMMC-7721 cells; scratch wound assay and transwell matrigel system has been used to examine the effect of PM2.5 on the migration and invasion ability of SMMC-7721 cells; furthermore, effect of PM2.5 on epithelial mesenchymal transition (EMT) of SMMC-7721 cells were examined by examining the EMT markers vimentin, ɑ-smooth muscle actin (ɑ-SMA), and E-cadherin; furthermore, the roles of microRNA-16 (miR-16) and its target Twist1 in PM2.5 induced carcinogenic effects were also examined. Results of CCK-8 assay suggested that PM2.5 promoted the proliferation of SMMC-7721 cells in a dose and time dependent manner. PM2.5 also markedly promoted the migration and invasion ability of SMMC-7721 cells. Moreover, epithelial mesenchymal transition (EMT) was also triggered by PM2.5. On the other hand, microRNA-16 (miR-16) and its target Twist1 was found to be mediated by PM2.5, and miR-16 mimic could suppress the metastatic ability of SMMC-7721 cells exposure to PM2.5 via inversely regulating the expression of Twist1. Furthermore, dual Luciferase reporter assay confirmed the specifically binding of miR-16 to the predicted 3′-UTR of Twist1. The present study confirmed the pro-proliferative and pro-metastatic effect of PM2.5 on HCC cell line SMMC-7721. The possible mechanisms were EMT process induced by PM2.5 in SMMC-7721 cells, which was accompanied by a decrease in miR-16 and increase in Twist1 expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Haiyan Du ◽  
Jiangyong Gu ◽  
Qin Peng ◽  
Xiaolan Wang ◽  
Lei Liu ◽  
...  

Berberine (BBR), a natural alkaloid derived from Coptis, has anticancer activity. Some researchers have found that it could restrain epithelial-mesenchymal transition (EMT) of melanoma, neuroblastoma, and other tumor cells. However, it is unclear whether BBR can reverse EMT in hepatocellular carcinoma (HCC) and gastric carcinoma (GC). In our study, BBR inhibited the migration and invasion of HepG2, MGC803, and SGC7901 cells in a dose-dependent manner. Transcription sequencing assays showed that Vimentin, MMP, and Smad3 were downregulated, but Smad2, Smad6, TAB2, ZO-1, and claudin 7 were upregulated when treated with BBR. GO Enrichment analysis of KEGG pathway showed that BBR significantly inhibited TGF-β/Smad at 12 h, then, PI3K/Akt and Wnt/β-catenin signaling pathways at 24 h, which were closely related to the proliferation, migration, and EMT. The results of the transcriptome sequencing analysis were verified by Western Blot. It showed that the expression of epithelial marker E-cadherin and ZO-1 remarkably augmented with BBR treatment, as well as declined mesenchymal markers, including N-cadherin and Vimentin, decreased transcription factor Snail and Slug. The effects of BBR were similar to those of the PI3K inhibitor LY294002 and TGF-β receptor inhibitor SB431542. Furthermore, β-catenin and phosphorylation of AKT, Smad2, and Smad3 were changed dose-dependently by BBR treatment, which upregulated p-Smad2 and downregulated the others. Combined with LY or SB, respectively, BBR could enhance the effects of the two inhibitors. Simultaneously, IGF-1 and TGF-β, which is the activator of PI3K/AKT and TGF-β/Smad, respectively, could reverse the anti-EMT effect of BBR. The Molecular Docking results showed BBR had a high affinity with the TGF-β receptor I (TGFβR1), and the binding energy was -7.5 kcal/mol, which is better than the original ligand of TGFβR1. Although the affinity of BBR with TGF-β receptor II (TGFβR2) was lower than the original ligand of TGFβR2, the more considerable negative binding energy (−8.54 kcal/mol) was obtained. BBR upregulated p-Smad2, which was different from other reports, indicating that the function of Smad2 was relatively complex. Combination BBR with SB could enhance the effect of the inhibitor on EMT, and the results indicated that BBR binding to TGFβR was not competitive with SB to TGFβR since different binding amino acid sites. Our experiments demonstrated BBR increased p-Smad2 and decreased p-Smad3 by binding to TGFβR1 and TGβFR2 inhibiting TGF-β/Smad, then, PI3K/AKT and other signaling pathways to restrain EMT, metastasis, and invasion in tumor cells. The effect of BBR was similar on the three tumor cells.


Author(s):  
Chen-hui Bao ◽  
Lin Guo

Background: Gastric cancer (GC) accounts for high mortality, which seriously threatens people’s health. This study set out to probe into the effect and mechanism of miR-27b-3p on invasion and migration of GC. Methods: The miRNA sequence data of GC was acquired from The Cancer Genome Atlas (TCGA) database. The differential expression of miRNAs (DEMis) was acquired through R packages “edgeR” and “limma.” TargetScan, picTar, RNA22, PITA, and miRanda were performed to predict the target gene of miR-27b-3p. Western-blot and RT-PCR were applied to detect the expression level of the selected candidate. Transwell assays evaluated the effect of miR-27b-3p and runt-related transcription factor 1 (RUNX1) on cell migration and invasion. The rescue assay was achieved by co-culture with mimics of miR-27b-3p and vector of RUNX1. The psiCHECK2 vector was used in the luciferase report assay. Results: We found miR-27b-3p was down-regulated in GC and associated with GC patients' poor survival based on the TCGA data and bioinformatics analysis. Furthermore, RUNX1 was the target gene of miR-27b-3p, which was proved by the luciferase report assay. miR-27b-3p and RUNX1 jointly participate in the regulation of the Hippo pathway. The up-regulated miR-27b-3p could inhibit epithelial–mesenchymal transition (EMT) as well as invasion and migration. However, an overexpressed RUNX1 could weaken this phenomenon. Conclusion: miR-27b-3p was down-regulated in GC, and it could regulate the Hippo pathway and affect EMT by inhibiting RUNX1 expression.


Sign in / Sign up

Export Citation Format

Share Document