scholarly journals Numerical Simulation on Effects of Horizontal Natural Opening Area and Heat Release Rate on Temperature Distribution and Vent Flow in Small Compartment

2021 ◽  
Vol 35 (3) ◽  
pp. 23-33
Author(s):  
Min Yeong Park ◽  
Ji Hyun Yang ◽  
Chi Young Lee

In this study, the numerical simulation to investigate the effects of horizontal natural opening areas and heat release rates on temperature distribution and vent flow in a small compartment was performed using a fire dynamics simulator. The reduced scale model of a stage in a real scale theater with horizontal natural opening was selected for this study. The horizontal opening areas were 0.0196, 0.1024, and 0.2025 m2 (1, 5, and 10% of the floor area, respectively), and the heat release rates were 0.46, 1.35, and 2.61 kW. By decreasing the horizontal opening area and increasing the heat release rate, the temperature in the compartment increased. Additionally, by increasing the heat release rate, the average velocity near the center of the opening increased. For the increase in the horizontal opening area from 0.0196 to 0.1024 m2, the velocity near the center of the opening increased. However, when the horizontal opening area increased from 0.1024 to 0.2025 m2, the variation in velocity was not noticeable. Considering the analyses of temperature and velocity distributions of vent flow, the bidirectional flow pattern was observed, where the outflow and inflow occurred at the center and edge of the horizontal opening, respectively. The mass flow rate through the horizontal opening increased with the increase in the horizontal opening area and heat release rate. The previous correlation for mass flow rate under-predicted the present numerical simulation data.

2007 ◽  
Vol 31 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Bart J. G. Sette ◽  
Erwin Theuns ◽  
Bart Merci ◽  
Paul Vandevelde

Author(s):  
Kohyu Satoh ◽  
Naian Liu ◽  
Qiong Liu ◽  
K. T. Yang

Fire whirls in large city fires and forest fires, which are highly dangerous and destructive, can cause substantial casualties and property damages. It is important to examine under what conditions of weather and geography such merging fires and fire whirls are generated. However, detailed physical characteristics about them are not fully clarified yet. Therefore, we have conducted preliminary studies about merging fires and swirling fires and found that they can enhance the fire spread. If sufficient knowledge can be obtained by relevant experiments and numerical computations, it may be possible to mitigate the damages due to merged fires and fire whirls. The objective of this study is to investigate the swirling conditions of fires in square arrays, applying wind at one corner, in laboratory experiments and also by CFD numerical simulations. Varying the inter-fire distance, heat release rate and mass flow rate by a wind fan, ‘swirling’ or ‘non-swirling’ in the array were judged. It has been found that the fire whirl generation is highly affected by the inter-fire distance in the array, the total heat release rate and also the mass flow rate by a fan. We obtained the conditions of swirling fire generation in 15 × 15 square array for (1) the ratio between the upward mass flow rate vs. applied mass flow rate in the upward swirling plume and (2) a non-dimensional relationship between the heat flow rate in the swirling plume and the applied mass flow rate.


Author(s):  
Nicholas C. W. Treleaven ◽  
Andrew Garmory ◽  
Gary J. Page

Abstract It has been shown that the fluctuations of pressure caused by a thermoacoustic instability can affect the mass flow rate of air and atomisation of the liquid fuel inside a gas turbine. Tests with premixed flames have confirmed that the fluctuations of the mass flow rate of air can affect the heat release rate through purely aerodynamic phenomenon but little work has been done to test the sensitivity of the heat release rate to changes in the fuel atomisation process. In this study, a lean-burn combustor geometry is supplied with a fuel spray fluctuation of SMD (Sauter mean diameter) of 20% with respect to the mean value and the heat release rate predicted using Large Eddy Simulation (LES) with combustion predicted using a presumed probability density function (PPDF), flamelet generated manifolds (FGM) method. Previous work has shown that at atmospheric conditions the SMD may fluctuate by up to 16% percent and at low frequencies may be reasonably well predicted by using a correlation based on the instantaneous velocity and mass flow rate of air close to the air-blast atomiser. Analysis of the flow fields highlights a complicated spray, flame and wall interaction as being responsible for this observed fluctuation of heat release rate. The heat release rate predicted by the LES shows a 20% fluctuation which implies that even small fluctuations of SMD will significantly contribute to thermoacoustic instabilities.


2021 ◽  
Vol 11 (7) ◽  
pp. 3247
Author(s):  
Dong Hwan Kim ◽  
Chi Young Lee ◽  
Chang Bo Oh

In this study, the effects of discharge area and atomizing gas type in a twin-fluid atomizer on heptane pool fire-extinguishing performance were investigated under the heat release rate conditions of 1.17 and 5.23 kW in an enclosed chamber. Large and small full cone twin-fluid atomizers were prepared. Nitrogen and air were used as atomizing gases. With respect to the droplet size of water mist, as the water and air flow rates decreased and increased, respectively, the Sauter mean diameter (SMD) of the water mist decreased. The SMD of large and small atomizers were in the range of approximately 12–60 and 12–49 μm, respectively. With respect to the discharge area effect, the small atomizer exhibited a shorter extinguishing time, lower peak surface temperature, and higher minimum oxygen concentration than the large atomizer. Furthermore, it was observed that the effect of the discharge area on fire-extinguishing performance is dominant under certain flow rate conditions. With respect to the atomizing gas type effect, nitrogen and air appeared to exhibit nearly similar extinguishing times, peak surface temperatures, and minimum oxygen concentrations under most flow rate conditions. Based on the present and previous studies, it was revealed that the effect of atomizing gas type on fire-extinguishing performance is dependent on the relative positions of the discharged flow and fire source.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


2019 ◽  
Vol 826 ◽  
pp. 117-124
Author(s):  
Yurii Baidak ◽  
Iryna Vereitina

The paper relates to the field of measuring technologies and deals with the enhancement of thermoconvective method when it is applied for the experimental determination of such hydrodynamics indicators as mass flow rate and velocity of flow by their indirect parameters - capacity of the heater and the temperatures obtained from two thermal sensors, provided that they are located on the hermetic piping system surface. The issue of determination of correction factor on heterogeneity of liquid temperature distribution in the pipe cross section depending on pipe diameter and fluid movement velocity was clarified. According to the results of numerical calculations, the dependencies of temperature gradient on the pipe surface and the correction factor on the heterogeneity of the temperature distribution along the pipe cross-section under the heater in the function of the velocity of flow in pipes of different diameters are plotted. These dependencies specify the thermal method of studying the fluid flow in the pipes, simplify the experiment conduction, are useful in processing of the obtained results and can be applied in measuring engineering.


1998 ◽  
Vol 120 (1) ◽  
pp. 112-118
Author(s):  
Qin Yuan ◽  
D. C. Sun ◽  
D. E. Brewe

Part 2 begins by describing the numerical solution procedures of the hybrid lubrication problem. Results of the computation are then presented that include the detailed pressure and temperature distribution in the oil film, the required supply pressure for maintaining the prescribed minimum oil film thickness, the fluid friction acting on the worm coil surface, the mass flow rate of supply oil, and the power loss associated with the restrictor flow. The feasibility of the hydrostatically lubricated wormgear transmission is discussed in light of these results.


Author(s):  
Kitti Nilpueng ◽  
Somchai Wongwises

In this study, the flow mechanisms of HFC-134a and HFC-410A, including flow pattern, pressure distribution, temperature distribution, and mass flow rate inside short-tube orifice are presented and compared under the same working temperature. The test runs are performed at condenser temperature ranging between 35 and 45°C, evaporator temperature ranging between 2 and 12°C, and degree of subcooling ranging between 1 and 12 °C. The results show that the temperature distribution along the short-tube orifice obtained from HFC-410A is slightly higher than that obtained from HFC-134a. On the other hand, the pressure distribution between both refrigerants shows the large difference. It is also found that the tendency of mass flow rate obtained from HFC-134a almost coincides with those obtained HFC-410A as the operating conditions and short-tube orifice size are varied. However, the average mass flow rate of HFC-134a is slightly lower than that of HFC-410A.


2012 ◽  
Vol 518-523 ◽  
pp. 1269-1272 ◽  
Author(s):  
Liang Yi ◽  
Jie Chen

The aim of this work is to study the burning characteristics of coach fire. With application of computational fluid dynamics (FDS software package), coach fires caused by arson are simulated under different ventilation conditions. Variation of heat release rate (HRR) and distribution of temperature are analyzed. Peak heat release rate of coach fire caused by arson in passenger carriage can reach about 24 MW and maximum temperature in the carriage is over 1000 °C. Results of this study can be referred for fire protection and rescue design of coach.


Sign in / Sign up

Export Citation Format

Share Document