scholarly journals DEVELOPMENT OF ANALYTICAL METHOD AND ITS VALIDATION FOR SILDENAFIL CITRATE BY UV-SPECTROPHOTOMETRY

2020 ◽  
Vol 11 (12) ◽  
pp. 41-45
Author(s):  
Deepali Tomar ◽  
Peeyush Kaushik ◽  
Ashish S Mishra ◽  
Lalan Kumar Sah

bulk drugs and the drug formulations and its validation. Method: The ideal conditions were established for the investigation or analysis of the drug. Results: The λmax of 293.2nmwas found for the Sildenafil citrate. Within, 8 to 60μg/ml concentration range the method complied with Beer's Law and show exceptional sensitivity with linearity. Moreover, 1.012 and 3.036 were observed limit of detection and quantification, respectively. When the absorbance versus concentration graph was plotted on the calibration curves a linear relationship was observed with the coefficient correlation of 0.99. The observed regression coefficient (Y) of the calibration curves was found to be 0.0131x- 0.0191. The method was precise and accurate with the experiential value of 2.0325± 0.044. The stability of the test solution was up to 48 hours. Conclusion: The proposed analytical method is simple, economical and experimentally less time-consuming. Therefore, it will be appropriate for Sildenafil citrate analysis of pharmaceutical formulations in bulk.

2019 ◽  
Vol 10 (4) ◽  
pp. 3717-3727
Author(s):  
Dawood CH. Al-Bahadily ◽  
Rasool Chaloob ◽  
Kulood H. Oudah ◽  
H. N. K. AL-Salman ◽  
Falah Hassan Shari ◽  
...  

In this study, a simple and reliable stability-indicating RP-HPLC method was developed and validated for the analysis of Nystatin in the pharmaceuticals. The chromatographic separation was performed in the isocratic mode on an Ion Pac column; Arcus EP‑C18; 5μm, 4.6×250 mm, 30 °C) using a mobile phase consisting of ammonium acetate 0.05 M buffer/ Methanol mixture (30:70) and a flow-rate of 1.0 mL/min with UV detection at 305 nm. The flow rate was set at 1.0 mL/min. The HPLC analysis method was validated in terms of linearity, precision, accuracy, specificity, and sensitivity, according to International Conference on Harmonization (ICH) guidelines. The results indicated that the retention time was 8 min, and no interferences were observed from the formulation excipients and stress degradation products.  The specificity, linearity, precision, accuracy, LOD, and LOQ of the method were validated. The method was linear over the range of 5–500 μg/mL with an acceptable correlation coefficient (R2 = 0.9996). The method’s limit of detection (LOD) and quantification (LOQ) were 0.01 and 0.025 μg/mL, respectively. The results indicate that this validated method can be used as an alternative method for the assay of nystatin. This validated HPLC method could be used for routine analysis, quality control, and the stability of analysis of Nystatin formulations.


2012 ◽  
Vol 9 (2) ◽  
pp. 993-998
Author(s):  
Madhusudhanareddy Induri ◽  
Bhagavan Raju M. ◽  
Rajendra Prasad Y. ◽  
Pavankumar Reddy K.

The objective of present study was to develop and validate an analytical method for quantitative determination and dissolution studies of glimepiride in tablets. The glimepiride shows absorption maxima at 225 nm and obeyed Beer's law in the range of 6.0 – 14.0 µg/mL. The limit of detection and limit of quantitation were 0.06, and 0.17 µg/mL respectively. Percentage recovery of glimepiride for the proposed method ranged from 99.32 to 100.98% indicating no interference of the tablet excipients. It was concluded that the proposed method is simple, easy to apply, economical and used as an alternative to the existing spectrophotometric and non-spectrophotometric methods for the routine analysis of glimepiride in pharmaceutical formulations andin vitrodissolution studies.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
J. Peris-Vicente ◽  
S. Carda-Broch ◽  
J. Esteve-Romero

The validation of an electrophoresis-based analytical method to quantify 17 antihistamines in pharmaceutical formulations and serum is described. Then, whether the methodology provides true values with low uncertainty and is able to detect the concentration range level of analyte usually found in the matrix was evaluated. The analytical method was validated following the recommendations of an official guide to provide more reliability to the results. The ICH Harmonized Tripartite Guideline was selected because it was especially developed for analysis of drugs. The guide and the following required validation parameters, selectivity, calibration range, linearity, limit of detection, limit of quantification, inter- and intraday accuracy and precision, and robustness, were described. The method was inexpensive, fast, simple, environmentally friendly, and useful for routine analysis. The methodology was successfully validated and applied to commercial pharmaceutical formulations and spiked blank serum samples.


2019 ◽  
Vol 35 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Somana Siva Prasad ◽  
G. V. Krishna Mohan ◽  
A. Naga Babu

In this study, a novel, simple and precise RP-HPLC method has been developed for the quantitative analysis of Lenalidomide (LLM) in pharmaceutical formulations using analytical quality by design approach. An X-bridge-C18 column (150 mm × 4.6 mm × 3.5 µ) with mobile phases containing a Potassium dihydrogen orthophosphate anhydrous buffer and methanol in the ratio of (90:10 v/v) and (35:65 v/v) are used for the estimation of LLM and its degradation products. The flow rate of 0.8 mL/min is maintained and all degradation studies are performed at 210 nm using photodiode array (PDA) detector. Method Validation is carried out according to International Council for Harmonisation (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) are evaluated. The present developed RP-HPLC method shows the purity angle of peaks is less than their threshold angle, signifying that it to be suitable for stability studies. Hence, the developed method can be used for the successful separation of LLM and its impurities in the pharmaceutical dosage formulations.


Biosensors ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Iulia Rus ◽  
Mihaela Tertiș ◽  
Cristina Barbălată ◽  
Alina Porfire ◽  
Ioan Tomuță ◽  
...  

The aim of this study was to develop a disposable, simple, fast, and sensitive sensor for the simultaneous electrochemical detection of doxorubicin (DOX) and simvastatin (SMV), which could be used in preclinical studies for the development of new pharmaceutical formulations for drug delivery. Firstly, the electrochemical behavior of each molecule was analyzed regarding the influence of electrode material, electrolyte solution, and scan rate. After this, the proper electrode material, electrolyte solution, and scan rate for both active substances were chosen, and a linear sweep voltammetry procedure was optimized for simultaneous detection. Two chronoamperometry procedures were tested, one for the detection of DOX in the presence of SMV, and the other one for the detection of DOX and SMV together. Finally, calibration curves for DOX and SMV in the presence of each other were obtained using both electrochemical methods and the results were compared. The use of amperometry allowed for a better limit of detection (DOX: 0.1 μg/mL; SMV: 0.7 μg/mL) than the one obtained in voltammetry (1.5 μg/mL for both drugs). The limits of quantification using amperometry were 0.5 μg/mL for DOX (dynamic range: 0.5–65 μg/mL) and 2 μg/mL for SMV (dynamic range: 2–65 μg/mL), while using voltammetry 1 μg/mL was obtained for DOX (dynamic range: 1–100 μg/mL) and 5 μg/mL for SMV (dynamic range: 5–100 μg/mL). This detection strategy represents a promising tool for the analysis of new pharmaceutical formulations for targeted drug delivery containing both drugs, whose association was proven to bring benefits in the treatment of cancer.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4166
Author(s):  
Román Fernández ◽  
María Calero ◽  
Yolanda Jiménez ◽  
Antonio Arnau

Monolithic quartz crystal microbalance (MQCM) has recently emerged as a very promising technology suitable for biosensing applications. These devices consist of an array of miniaturized QCM sensors integrated within the same quartz substrate capable of detecting multiple target analytes simultaneously. Their relevant benefits include high throughput, low cost per sensor unit, low sample/reagent consumption and fast sensing response. Despite the great potential of MQCM, unwanted environmental factors (e.g., temperature, humidity, vibrations, or pressure) and perturbations intrinsic to the sensor setup (e.g., mechanical stress exerted by the measurement cell or electronic noise of the characterization system) can affect sensor stability, masking the signal of interest and degrading the limit of detection (LoD). Here, we present a method based on the discrete wavelet transform (DWT) to improve the stability of the resonance frequency and dissipation signals in real time. The method takes advantage of the similarity among the noise patterns of the resonators integrated in an MQCM device to mitigate disturbing factors that impact on sensor response. Performance of the method is validated by studying the adsorption of proteins (neutravidin and biotinylated albumin) under external controlled factors (temperature and pressure/flow rate) that simulate unwanted disturbances.


2012 ◽  
Vol 48 (4) ◽  
pp. 801-810 ◽  
Author(s):  
Marcelo Antonio de Oliveira ◽  
Caroline Dutra Lacerda ◽  
André Fazôlo Bonella

Atorvastatin (ATV) is an antilipemic drug of great interest to the pharmaceutical industry. ATV does not appear in the monographs of Brazilian pharmacopoeia, and analytical methodologies for its determination have been validated. The chromatographic conditions used included: RP-18 column-octadecylsilane (250 x 4.6 mm, 5 mm), detection at 238 nm, mobile phase containing 0.1% phosphoric acid and acetonitrile (35:65% v/v), flow at 1.5 mL min-1, oven temperature at 30ºC, and injection volume of 10 mL. ATV is classified as a class II product, according to the biopharmaceutical classification system. As such, a dissolution test was proposed to evaluate pharmaceutical formulations on the market today, under the following conditions: water as a dissolution medium, 1000 mL as a volume, paddle apparatus at a rotation speed of 50 rpm, 80% (Q) in 15 minutes with UV spectrophotometer readings at 238 nm. In the pattern condition proposed as the ideal dissolution test, which appropriately differentiates amongst formulations, the generic product was not considered pharmaceutically equivalent; however, in other less differential dissolution methods, which also fall within appropriate legal parameters, this product could come to be regarded as generic.


2017 ◽  
Vol 9 (5) ◽  
pp. 102
Author(s):  
Sukhjinder Kaur ◽  
Taranjit Kaur ◽  
Gurdeep Kaur ◽  
Shivani Verma

Objective: The aim of the present work was to develop a simple, rapid, accurate and economical UV-visible spectrophotometric method for the determination of hydroquinone (HQ) in its pure form, marketed formulation as well as in the prepared nanostructured lipid carrier (NLC) systems and to validate the developed method.Methods: HQ was estimated at UV maxima of 289.6 nm in pH 5.5 phosphate buffer using UV-Visible double beam spectrophotometer. Following the guidelines of the International Conference on Harmonization (ICH), the method was validated for various analytical parameters like linearity, precision, and accuracy robustness, ruggedness, limit of detection, quantification limit, and formulation analysis.Results: The obtained results of the analysis were validated statistically. Recovery studies were performed to confirm the accuracy of the proposed method. In the developed method, linearity over the concentration range of 5-40 μg/ml of HQ was observed with the correlation coefficient of 0.998 and found in good agreement with Beer Lambert’s law. The precision (intra-day and inter-day) of the method was found within official RCD limits (RSD<2%).Conclusion: The sensitivity of the method was assessed by determining the limit of detection and limit of quantification. It could be concluded from the results obtained that the purposed method for estimation of HQ in pure form, in the marketed ointment and in the prepared NLC-formulation was simple, rapid, accurate, precise and economical. It can be used successfully in the quality control of pharmaceutical formulations and for the routine laboratory analysis.


Author(s):  
Audrey Rizzo ◽  
Xavier Moreau ◽  
Alain Oustaloup ◽  
Vincent Hernette

In a vibration isolation context, fractional derivative can be used to design suspensions which allow to obtain similar performances in spite of parameters uncertainties. This paper presents the synthesis and the achievement of a new Hydractive CRONE suspension system. After the study of the different constraint in suspension in the first paper, the ideal transfer function of the hydractive CRONE suspension is created and simulated in different case. Then a method to determine the technological parameters is proposed. A parallel arrangement of dissipative and capacitive components and a gamma arrangement are compared. They lead to the same unusual performances: the stability degree robustness and the rapidity robustness.


Sign in / Sign up

Export Citation Format

Share Document