DESCRIPTION AND APPLICATION OF THE OPERATIONAL OIL SPILL FORECAST SYSTEM TESEO

2008 ◽  
Vol 2008 (1) ◽  
pp. 1023-1029
Author(s):  
ANA J. Abasca ◽  
Sonia Castanedo ◽  
A. David Gutierrez ◽  
Raul Medina ◽  
Inigo J. Losada ◽  
...  

ABSTRACT In the framework of the ESEOO Project (Spanish Operational Oceanography System) a complete set of models has been developed to simulate oil spills transport and fate processes. These models have been integrated in a user friendly operational system called TESEO. The main objective of the TESEO system is to integrate the meteorological and oceanographic data as well as the oil properties data required by the oil spill model to provide the evolution of contaminating spills at a regional scale. The system is linked with the operational winds and currents forecast system and, consequently, is able to provide useful information to decision-makers in a crisis situation. The performance of TESEO system has been successfully tested during four operational oil spills exercises organized by the Spanish Maritime Safety and Rescue Agency (SASEMAR) with the collaboration of the ESEOO Group. In these exercises, the TESEO system was used to provide forecast spill trajectories and fate processes to decision-makers in real time. Detailed information regarding the operational requirements of the system and its utilization during the Finisterre-2006 exercise is presented in this paper. The Finisterre-2006 exercise, as well as the other operational exercises performed, shows the TESEO system'S capability as a useful tool in an oil spill response.

2003 ◽  
Vol 2003 (1) ◽  
pp. 1035-1037 ◽  
Author(s):  
Michael Kirwan John Short

ABSTRACT On the 18th January 2000 a broken pipeline owned and operated by the oil company Petrobras spilt some 1300 tonne of bunker fuel into Guanabara Bay, Rio de Janeiro. The wildlife response was divided amongst 2 operational strategies and included – avian fauna and cetaceans. This paper deals with the cetacean response only. Cetaceans are generally not considered as an important feature of an oil spill response. Contingency planning for cetaceans in oil spills is now becoming an important element for preparedness for some countries. The cetacean response in Guanabara Bay specifically targeted a pod of about 70 members of the species Sotalia fluviatilis, a small dolphin that inhabits the bay. The response included the development of a plan that included a response system, a monitoring program and action plans. The response system detailed the mechanism for the plan to work and adopted the incident control management system. The monitoring program related to the study of any short term or long term deleterious effects resulting from the spill and consisted of basic spatial, temporal and behavioural studies. Action plans were developed specific to the character of Guanabara Bay and included the rescue and rehabilitation strategies necessary to respond to oil affected cetaceans. A training program was then developed and implemented to personnel who were to enact the cetacean response.


2005 ◽  
Vol 2005 (1) ◽  
pp. 139-141
Author(s):  
Jeffrey H. Rubini

ABSTRACT Governments and industry, both national and international, contend that dispersants are an effective and practical response option under certain circumstances. However, a comprehensive training and education program in dispersant operations used to establish a baseline of understanding among responders and stakeholders is lacking. Dispersant operations have played a positive and significant role on numerous oil spills in both national and international waters, yet a curriculum in dispersant operations remains a minor component of oil spill response course curricula. This may suggest that decision makers, responders and ultimately the public and environment are being shortchanged of alternative response technology training and education, which essentially fails to meet the needs of regional response teams, area committees, natural resource trustees, and the general oil spill response community's future decision makers. Supported through case study analyses and critical argumentation, this paper presents an oil spill dispersant operations curriculum that governments and industry, both national and international, can adapt.


1993 ◽  
Vol 1993 (1) ◽  
pp. 105-109 ◽  
Author(s):  
E. H. Owens ◽  
E. Taylor ◽  
R. Marty ◽  
D. I. Little

ABSTRACT Inland oil spills generally have received less attention than their coastal and marine counterparts. On the average, more than 2,000 spills occur on the inland waters of the continental United States each year. Recognizing the potential effects of these spills, the American Petroleum Institute has funded several studies in recent years to address issues associated with inland spills. One product of this activity is the preparation of a set of guidelines to be published as a manual for inland oil spill response. The manual focuses on the identification of techniques that would have minimal intrinsic ecological impacts (that is, to living resources) and would also minimize the total ecological and/or environmental impacts of the oil. The guidelines are intended to help decision makers assess whether the available response options can mitigate the effects of a spill and/or accelerate recovery from the oiling. The analysis and the recommendations are presented in a set of matrices that combine four oil types, more than 20 response techniques, and 10 inland freshwater habitats.


Author(s):  
Alexander Ermolov ◽  
Alexander Ermolov

International experience of oil spill response in the sea defines the priority of coastal protection and the need to identify as most valuable in ecological terms and the most vulnerable areas. Methodological approaches to the assessing the vulnerability of Arctic coasts to oil spills based on international systems of Environmental Sensitivity Index (ESI) and geomorphological zoning are considered in the article. The comprehensive environmental and geomorphological approach allowed us to form the morphodynamic basis for the classification of seacoasts and try to adapt the international system of indexes to the shores of the Kara Sea taking into account the specific natural conditions. This work has improved the expert assessments of the vulnerability and resilience of the seacoasts.


2021 ◽  
Vol 13 (12) ◽  
pp. 6585
Author(s):  
Mihhail Fetissov ◽  
Robert Aps ◽  
Floris Goerlandt ◽  
Holger Jänes ◽  
Jonne Kotta ◽  
...  

The Baltic Sea is a unique and sensitive brackish-water ecosystem vulnerable to damage from shipping activities. Despite high levels of maritime safety in the area, there is a continued risk of oil spills and associated harmful environmental impacts. Achieving common situational awareness between oil spill response decision makers and other actors, such as merchant vessel and Vessel Traffic Service center operators, is an important step to minimizing detrimental effects. This paper presents the Next-Generation Smart Response Web (NG-SRW), a web-based application to aid decision making concerning oil spill response. This tool aims to provide, dynamically and interactively, relevant information on oil spills. By integrating the analysis and visualization of dynamic spill features with the sensitivity of environmental elements and value of human uses, the benefits of potential response actions can be compared, helping to develop an appropriate response strategy. The oil spill process simulation enables the response authorities to judge better the complexity and dynamic behavior of the systems and processes behind the potential environmental impact assessment and thereby better control the oil combat action.


1995 ◽  
Vol 35 (1) ◽  
pp. 830
Author(s):  
D.J. Blackmore

It is vital that there is a credible and well organised arrangement to deal with oil spills in Australia.The National Plan to Combat Pollution of the Sea by Oil, the umbrella oil spill response plan for Australia, is a combined effort by the Commonwealth and State Governments, the oil industry and the shipping industry.The Australian Marine Oil Spill Centre (AMOSC), formed in 1991, is an industry centre set up for rapid response with equipment and resources, together with a training and industry coordination role.A review of the National Plan in 1992, identified, amongst a number of issues, that the National Plan needed to be re-focussed, to ensure full integration of all government and industry activities for the first time. This has led to greatly improved understanding between government and industry and significant improvements to Australia's oil spill response preparedness. The National Plan review has also resulted in a clearer definition of the responsibilities for operational control, together with the organisational structure to deliver a successful response.The current state of Australia's National Plan is such that it does provide confidence that there is the capacity to deliver an effective response to oil spills in the marine environment. Nevertheless, there is more to be done, particularly in the areas of planning and exercises.


1993 ◽  
Vol 1993 (1) ◽  
pp. 127-133
Author(s):  
Mac W. McCarthy ◽  
John McGrath

ABSTRACT On July 22, 1991, the Tuo Hai, a 46,500 ton Chinese grain carrier, collided with the Tenyo Maru, a 4,800 ton Japanese fish processing ship, off the coast of Washington State. The Tenyo Maru sank, creating an oil spill that cost upwards of $4 million (U.S.) to clean up. The incident initiated a joint response from the U.S. and Canadian governments. As part of this response, the Canadian Coast Guard mobilized an SRN-6 hovercraft. This air cushioned vehicle (ACV) provided logistical support to responders on both sides of the international boundary. The response operation along the Pacific Coast was extensive. Dense fog and the remote location of the impacted area provided formidable challenges to the cleanup effort. It was the mission scenario of the Canadian SRN-6 hovercraft to provide logistical support—as an experiment in ACV utility—to the organizations responding to this incident. Based on this experience, it can be argued that the hovercraft offers great potential value in responding to marine oil spills. Appropriate application of ACV technology can enhance oil spill response work, spill waste management, and incident surveillance. This paper discusses the contribution of the SRN-6 hovercraft to the Tenyo Maru response, briefly examines the use of another, very different hovercraft, during a response in the Gulf of St. Lawrence, and reviews a new hovercraft design and discusses its potential contributions.


1995 ◽  
Vol 1995 (1) ◽  
pp. 503-508
Author(s):  
Hussein Bin Rahmat ◽  
Mohd Radzuan Bin Yusof

ABSTRACT The increasing incidence of oil spills in the Strait of Malacca and the South China Sea has resulted in growing concern about Malaysia's capability to respond to oil spills in its waters. This concern is compounded by the ever-growing number of oil tankers plying the Strait of Malacca and the South China Sea, as well as the intensifying exploration and development of offshore petroleum resources. Various measures were taken by the government to deal with the problem, including a review of its National Oil Spill Contingency Plan (NOSCP) and incorporating a coordinated and a cost-effective response mechanism among the various government agencies. The incorporation of the Petroleum Industry of Malaysia Mutual Aid Group (PIMMAG), which enables the oil industry to pool its oil spill response resources, reflects the industry's commitment to strengthen the NOSCP. Since the mid 1970s, a number of regional plans have been instituted including the Traffic Separation Scheme for the Strait of Malacca, the Strait of Malacca and Singapore Revolving Fund, the Lombok-Macassar Oil Spill Contingency Plan, the Brunei Bay Oil Spill Contingency Plan, the ASEAN Oil Spill Response Plan, and the proposed ASCOPE Oil Spill Contingency Plan.


1991 ◽  
Vol 1991 (1) ◽  
pp. 673-676
Author(s):  
Edward Tennyson

ABSTRACT Recent large oil spills from tankers have reaffirmed the need for continuing technology assessment and research to improve oil-spill response capabilities. The Minerals Management Service (MMS) remains a lead agency in conducting these studies. This paper discusses MMS concerns, as reinforced by the acceleration of its research program in 1990. It briefly assesses the current state-of-the-art technology for major aspects of spill response, including remote sensing, open-ocean containment, recovery, in-situ burning, chemical treating agents, beach-line cleanup, and oil behavior. The paper reports on specific research projects that have begun to yield information that will improve detection and at-sea equipment performance. The first detection project, for which MMS has patent pending, involves the use of shipboard navigational radar to track slicks at relatively long range. The second project involves the use of conventional containment and cleanup in a downwind mode, which is contrary to the traditional procedures. The paper also discusses current research projects, including the development of an airborne, laser-assisted fluorosensor that can determine whether apparent slicks contain oil. Additional projects involve the development of improved strategies for responding to oil in broken-ice conditions, for gaining an improved understanding of the fate and behavior of spilled oil as it affects response strategies, and for reopening and operating the oil and hazardous materials simulated environmental test tank (OHMSETT) facility in Leonardo, New Jersey. Recent progress on the development of safe and environmentally acceptable strategies to burn spilled oil in-situ is also discussed. The OHMSETT facility is necessary for testing prospective improvements in chemical treating agents and to develop standard procedures for testing and evaluating response equipment.


Sign in / Sign up

Export Citation Format

Share Document