scholarly journals Evaluation of Three Isolation Experiments for Campylobacter Bacteriophages from Chicken Skin: A Comparative Study

2021 ◽  
pp. 162-171
Author(s):  
Yasaman Kordi ◽  
Nazanin Khakipour

Background: Campylobacter strains are of the leading pathogens causing bacterial gastroenteritis, whose infections are generally considered to be one of the most common foodborne illnesses of animal origin. The etiology of this infection often goes back to eating contaminated raw meat or infected poultry. The bacteria are present in abundance in chicken skin. The use of appropriate bacteriophages is one of the most effective experiments in eliminating Campylobacter strains. Phage therapy refers to the use of bacteriophages to treat bacterial infections. Aim: Accordingly, the present study aimed to compare three experiments of bacteriophage isolation in chicken skin. Experiments: Thus, 15 samples of chicken skin were collected from five different fresh chicken suppliers in Ghaemshahr, Iran. The samples were transported to the laboratory aseptically in the vicinity of ice, and then cultured in blood agar medium, and the isolates were identified by various tests including gram staining, catalase and oxidase tests. Results: The results were compared before and after three bacteriophage isolation experiments. Out of 15 chicken skin samples tested in all three experiments, 6 (40%) strains were identified in the first experiment, 8 (53.4%) strains in the second experiment and 12 (20%) strains in the third experiment after bacteriophage therapy. Conclusion: The bacteriophage isolation experiments alone or in combination with other intervention strategies are recommended as promising tools for greater food safety. These experiments can be useful to increase food safety and reduce the risk of infection in humans through the consumption of potentially infected edible parts of chicken. According to the results of this study, among the three proposed experiments, the experiment of chicken skin enrichment in Bolton selective media containing target isolates was the most efficient approach, which showed a high limit of detection at low concentrations and the highest rate of phage recovery. This can be a more reliable way to isolate the Campylobacter bacteriophages and eliminate the Campylobacter strains.

Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM).The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated at a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM). The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mansureh Alizadeh ◽  
Mandana Amiri ◽  
Abolfazl Bezaatpour

: Amikacin is an aminoglycoside antibiotic used for many gram-negative bacterial infections like infections in the urinary tract, infections in brain, lungs and abdomen. Electrochemical determination of amikacin is a challenge in electroanalysis because it shows no voltammetric peak at the surface of bare electrodes. In this approach, a very simple and easy method for indirect voltammetric determination of amikacin presented in real samples. Gold nanoparticles were electrodeposited at the surface of glassy carbon electrode in constant potential. The effect of several parameters such as time and potential of deposition, pH and scan rates on signal were studied. The cathodic peak current of Au3+ decreased with increasing amikacin concentration. Quantitative analysis of amikacin was performed using differential pulse voltammetry by following cathodic peak current of gold ions. Two dynamic linear ranges of 1.0 × 10−8–1.0 × 10-7 M and 5.0 × 10−7–1.0 × 10-3 M were obtained and limit of detection was estimated 3.0× 10−9 M. The method was successfully determined amikacin in pharmaceutical preparation and human serum. The effect of several interference in determination of amikacin was also studied.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Andre Mu ◽  
Daniel McDonald ◽  
Alan K. Jarmusch ◽  
Cameron Martino ◽  
Caitriona Brennan ◽  
...  

Abstract Background Infectious bacterial diseases exhibiting increasing resistance to antibiotics are a serious global health issue. Bacteriophage therapy is an anti-microbial alternative to treat patients with serious bacterial infections. However, the impacts to the host microbiome in response to clinical use of phage therapy are not well understood. Results Our paper demonstrates a largely unchanged microbiota profile during 4 weeks of phage therapy when added to systemic antibiotics in a single patient with Staphylococcus aureus device infection. Metabolomic analyses suggest potential indirect cascading ecological impacts to the host (skin) microbiome. We did not detect genomes of the three phages used to treat the patient in metagenomic samples taken from saliva, stool, and skin; however, phages were detected using endpoint-PCR in patient serum. Conclusion Results from our proof-of-principal study supports the use of bacteriophages as a microbiome-sparing approach to treat bacterial infections.


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Pushap Raj ◽  
Man Hwan Oh ◽  
Kyudong Han ◽  
Tae Yoon Lee

Bacterial infections have become a significant challenge in terms of public health, the food industry, and the environment. Therefore, it is necessary to address these challenges by developing a rapid, cost-effective, and easy-to-use biosensor for early diagnosis of bacterial pathogens. Herein, we developed a simple, label-free, and highly sensitive immunosensor based on electrochemical detection using the Au@MoS₂–PANI nanocomposite. The conductivity of the glassy carbon electrode is greatly enhanced using the Au@MoS₂–PANI nanocomposite and a self-assembled monolayer of mercaptopropionic acid on the gold nanoparticle surface was employed for the covalent immobilization of antibodies to minimize the nonspecific adsorption of bacterial pathogens on the electrode surface. The biosensor established a high selectivity and sensitivity with a low limit of detection of 10 CFU/mL, and detected Escherichia coli within 30 min. Moreover, the developed biosensor demonstrated a good linear detection range, practical utility in urine samples, and electrode regenerative studies.


1973 ◽  
Vol 3 (3) ◽  
pp. 319-325 ◽  
Author(s):  
G. W. Ashcroft ◽  
Ivy M. Blackburn ◽  
D. Eccleston ◽  
A. I. M. Glen ◽  
W. Hartley ◽  
...  

SYNOPSISThe concentration of the acid metabolites of dopamine, and 5-hydroxytryptamine (5-HT), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5-HIAA) respectively, were estimated in the cerebrospinal fluid of patients suffering from either unipolar or bipolar affective illness, both before and after recovery. Significantly low concentrations of HVA and 5-HIAA (P<0·01 and 0·05 respectively) were found in the unipolar depressed group and these did not return to normal on recovery. Depressed bipolar patients had levels within normal limits. In bipolar manic patients the HVA concentration fell on recovery to a level significantly lower (P<0·05) than controls. There was no difference in the levels of tryptophan in the CSF of any of the groups of patients nor was there any alteration on recovery. There was a high correlation between 5-HIAA and HVA in the same CSF. These findings are against the amine hypothesis which postulated in depression a lowered concentration of transmitter amine at synaptic junction.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Andrzej Wernicki ◽  
Anna Nowaczek ◽  
Renata Urban-Chmiel

2018 ◽  
Vol 30 (5) ◽  
pp. 1379-1400 ◽  
Author(s):  
Shuhui Wang ◽  
Paul Alexander

Purpose Viewing consumer confidence as a set of static factors has informed previous research and underpinned strategies used in recovering from food safety quality failures, but this approach has not delivered reliable and quick recovery from large-scale food safety scandals. The purpose of this paper is to examine extant models and the factors they are composed of, and suggest an extended model that has a better potential for consumer confidence. The paper focuses on food products where supply chains are visible, and use these features to group the findings. Design/methodology/approach In this study principal components and logit analyses are used to assess the role of 30 variables operating in a consumer confidence model constructed from several existing in the literature. This combined model considers emotional, cognitive, trust and sociodemographic factors. In total, 14 independent factors are identified. The authors examine the factors, and from these, the decision-making mechanisms before and after the Sanlu Infant Milk Formula (IMF) scandal of 2008. Findings The authors find that the factors considered by consumers are different for different IMF supply chains, and different again before and after the scandal. The authors develop the argument for an extension to the existing models, incorporating a dynamic consumer confidence system. Research limitations/implications The paper uses a single survey after the focus event to establish “before” and “after” decision-making factors. Since the IMF scandal is recent and of very high profile, this is likely valid even if it carries memory bias effects. The study is directly applicable to food safety scandals in a Chinese context. Deductive reasoning extends our assertions to a wider context. They are logically validated but have not been formally tested. Practical implications Using this system as a framework a checklist for recovery from a similar food safety scandal is suggested. The authors also suggest more general use for use where supply chains features are visible to consumers. Originality/value Models for food safety consumer confidence recovery have previously focused on identifying models and the static factors they consist of. These do represent a reflection of how this phenomenon operates, but using the principals of this model nevertheless does not result in good recovery from extreme food safety failures. This paper contributes by extending these models to one that can be applied for better recovery.


2013 ◽  
Vol 67 (4) ◽  
pp. 639-653 ◽  
Author(s):  
Suncica Kocic-Tanackov ◽  
Gordana Dimic

The growth of fungi on food causes physical and chemical changes which, further affect negatively the sensory and nutritive quality of food. Species from genera: Aspergillus, Penicillium, Fusarium, Alternari?, Cladosporium, Mucor, Rhizopus, Eurotium and Emericella are usually found. Some of them are potentially dangerous for humans and animals, due to possible synthesis and excretion of toxic secondary metabolites - mycotoxins into the food. Their toxic syndroms in animals and humans are known as mycotoxicoses. The pathologic changes can be observed in parenhimatic organs, and in bones and central nervous system also. Specific conditions are necessary for mycotoxin producing fungi to synthetize sufficient quantities of these compounds for demonstration of biologic effects. The main biochemical paths in the formation of mycotoxins include the polyketide (aflatoxins, sterigmatocystin, zearalenone, citrinine, patulin), terpenic (trichothecenes), aminoacid (glicotoxins, ergotamines, sporidesmin, malformin C), and carbonic acids path (rubratoxins). Aflatoxins are the most toxigenic metabolites of fungi, produced mostly by Aspergillus flavus and A. parasiticus species. Aflatoxins appear more frequently in food in the tropic and subtropic regions, while the food in Europe is more exposed to also very toxic ochratoxin A producing fungi (A. ochraceus and some Penicillium species). The agricultural products can be contaminated by fungi both before and after the harvest. The primary mycotoxicoses in humans are the result of direct intake of vegetable products contaminated by mycotoxins, while the secondary mycotoxicoses are caused by products of animal origin. The risk of the presence of fungi and mycotoxin in food is increasing, having in mind that some of them are highly thermoresistent, and the temperatures of usual food sterilization is not sufficient for their termination. The paper presents the review of most important mycotoxins, their biologic effects, the condition of their synthesis, occurence in food, permitted tolerant intake, as well as the possibility of their degradation.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Aleksandra Kowalska ◽  
Louise Manning

Sesame seeds within the European Union (EU) are classified as foods not of animal origin. Two food safety issues associated with sesame seeds have emerged in recent years, i.e., Salmonella contamination and the presence of ethylene oxide. Fumigation with ethylene oxide to reduce Salmonella in seeds and spices is not approved in the EU, so its presence in sesame seeds from India was a sentinel incident sparking multiple trans-European product recalls between 2020–2021. Following an interpretivist approach, this study utilises academic and grey sources including data from the EU Rapid Alert System for Food and Feed (RASFF) database to inform a critical appraisal of current EU foods not of animal origin legislation and associated governance structures and surveillance programs. This is of particular importance as consumers are encouraged towards plant-based diets. This study shows the importance of collaborative governance utilizing data from company testing and audits as well as official regulatory controls to define the depth and breadth of a given incident in Europe. The development of reflexive governance supported by the newest technology (e.g., blockchain) might be of value in public–private models of food safety governance. This study contributes to the literature on the adoption of risk-based food safety regulation and the associated hybrid public–private models of food safety governance where both regulators and private organizations play a vital role in assuring public health.


Sign in / Sign up

Export Citation Format

Share Document