scholarly journals Nanoinsecticidal Efficacy of Ag/Ni Bimetallic Nanoparticles (BMNPs) on Lymphatic Filariasis Vector

Author(s):  
Danbature Wilson Lamayi ◽  
Ezra Abba ◽  
Zaccheus Shehu ◽  
Muhammad Mustapha Adam

Aims: Nanoparticles are gradually gaining wide scientific interest due to their various applications in catalysis, magnetism, medicine, optics, as antibacterial and nanolarvicidal agents. This research aimed at evaluating the larvicidal activity of green synthesized Ag/Ni BMNPs from the aqueous root extract of Borassus aethiopum as the stabilizing agent as well as their spectroscopic investigation using UV-Visible and FT-IR spectroscopy. Place and Duration of Study: The study was conducted in Gombe State University between August and December, 2019. Methodology: In this study, Ag/Ni hybrid bimetallic nanoparticles was synthesized using an eco-friendly method from the secondary metabolites of Borassus aethiopum acting as the reducing agent. Results: Optical measurements using UV-Vis showed the maximum absorption wavelength at 410nm while the FT-IR result for the root extract showed peaks at 3443.26cm-1, 2929.48 cm-1, 1651.28 cm-1, and 1080.12 cm-1 corresponding to OH stretch, sp3 C-H stretch, C=C stretch and C-O-C stretching respectively. These were replaced in the spectra of the BMNPs with the absence and appearance of some others indicating that they were involved in the capping process. The lethal concentration (LC50) was found to be 5.730, 13.585 and 15.735 mg/L for 1st, 2nd and 3rd/4th instars respectively. Also, the lethal concentration (LC90) was found to be 88.444, 195.689 and 236.889 mg/L for 1st, 2nd and 3rd/4th instars respectively. Conclusion: The larvicidal bioassay result showed a dose-dependent mortality rates against Culex quinquefasciatus larvae which suggest they can be developed to control the insect population.

2020 ◽  
Vol 2 (4) ◽  
pp. 74-78
Author(s):  
Wilson Lamayi Danbature ◽  
Zaccheus Shehu ◽  
Muhammad Mustapha Adam

In this study, silver-cobalt bimetallic hybrid nanoparticles were synthesized using green method from AgNO3 and CoCl2 metal precursors as well as the locally available root extract of Borassus aethiopum acting as the reducing agent. The formation of bimetallic nanoparticles was first noticed by a color change of the reaction mixture from light pink to light brown as the result of Surface Plasmon absorptions. The optical measurements using UV-Vis showed the maximum absorption wavelength at 420nm while the functional group identification using FT-IR revealed some replacements in the absorption of functional groups, disappearance, and appearance of some others in the spectra of the BMNPs relative to that of the root extract indicating that those involved in the bio-reduction process. In vitro antibacterial potency was investigated against five clinically isolated bacteria. The outcome of the result suggested that they inhibit the tested bacteria especially against Salmonella typhi, Bacillus subtilis and Klebsiella pneumoniae. Thus, it can be developed as a bio-control agent for the treatment of diseases caused by these bacterial pathogens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Biedulska ◽  
P. Jakóbczyk ◽  
M. Sosnowska ◽  
B. Dec ◽  
A. Muchlińska ◽  
...  

AbstractThe novel procedure of few-layer black phosphorus (FLBP) stabilization and functionalisation was here proposed. The cationic polymer PLL and non-ionic PEG have been involved into encapsulation of FLBP to allow sufficient time for further nanofabrication process and overcome environmental degradation. Two different spacer chemistry was designed to bind polymers to tumor-homing peptides. The efficiency of functionalisation was examined by RP-HPLC, microscopic (TEM and SEM) and spectroscopic (FT-IR and Raman) techniques as well supported by ab-initio modelling. The cell and dose dependent cytotoxicity of FLBP and its bioconjugates was evaluated against HB2, MCF-7 and MDA-MB-231 cell lines. Functionalisation allowed not only for improvement of environmental stability, but also enhances therapeutic effect by abolished the cytotoxicity of FLBP against HB2 cell line. Moreover, modification of FLBP with PLL caused increase of selectivity against highly aggressive breast cancer cell lines. Results indicate the future prospect application of black phosphorus nanosheets as nanocarrier, considering its unique features synergistically with conjugated polymeric micelles.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4443
Author(s):  
Arjnarong Mathaweesansurn ◽  
Naratip Vittayakorn ◽  
Ekarat Detsri

A new colorimetric sensor based on gold/silver bimetallic nanoparticles (Au–Ag BNPs) for the sensitive and selective detection of mercury (II) was developed. Gold nanoparticles (AuNPs) were synthesized by Turkevich method. The surface modification of AuNPs was modified by the layer–by–layer technique using poly(diallyl dimethylammonium chloride) which provided positively charged of AuNPs. Negatively charged silver nanoparticles (AgNPs) were synthesized by chemical reduction using poly(4–styrenesulfonic acid–co–maleic acid) as the stabilizing agent. The layer–by–layer assembly deposition technique was used to prepare Au–Ag BNPs of positively and negatively charged of AuNPs and AgNPs, respectively. The synthesized Au–Ag BNPs were characterized by a UV-visible spectrophotometer, zeta potential analyzer, FT–IR, TEM, XRD, and EDX. The Au–Ag BNPs sensor was able to detect mercury (II) in aqueous solution, visibly changing from brownish–orange to purple. The linear relationships of the UV-visible spectrometry demonstrate that the Au–Ag BNPs-based colorimetric sensor can be used for the quantitative analysis of mercury (II) in the range of 0.5–80 mg L−1, with the correlation coefficient, r2 = 0.9818. The limit of detection (LOD) of mercury (II) was found to be 0.526 + 0.001 mg L−1. The BNPs is also verified to have a good practical applicability for mercury (II) detection in the real samples.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1505 ◽  
Author(s):  
Shuyang Li ◽  
Xingtao Chen ◽  
Xiaomei Wang ◽  
Yi Xiong ◽  
Yonggang Yan ◽  
...  

Zinc can enhance osteoblastic bone formation and stimulate osteogenic differentiation, suppress the differentiation of osteoclast precursor cells into osteoclasts, and inhibit pathogenic bacterial growth in a dose-dependent manner. In this study, simonkolleite, as a novel zinc resource, was coated on poly (amino acids) (PAA) via suspending PAA powder in different concentrations of zinc chloride (ZnCl2) solution, and the simonkolleite-coated PAA (Zn–PAA) was characterized by SEM, XRD, FT-IR and XPS. Zinc ions were continuously released from the coating, and the release behavior was dependent on both the concentration of the ZnCl2 immersing solution and the type of soak solutions (SBF, PBS and DMEM). The Zn–PAA was cultured with mouse bone marrow stem cells (BMSCs) through TranswellTM plates, and the results indicated that the relative cell viability, alkaline phosphatase (ALP) activity and mineralization of BMSCs were significantly higher with Zn–PAA as compared to PAA. Moreover, the Zn–PAA was cultured with RAW264.7 cells, and the results suggested an inhibiting effect of Zn–PAA on the cell differentiation into osteoclasts. In addition, Zn–PAA exhibited an antibacterial activity against both S. aureus and E. coli. These findings suggest that simonkolleite coating with certain contents could promote osteogenesis, suppress osteoclast formation and inhibit bacteria, indicating a novel way of enhancing the functionality of synthetic bone graft material and identifying the underline principles for designing zinc-containing bone grafts.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Savy Panamkuttiyiel Minal ◽  
Soam Prakash

AbstractThe current study provides novel results on the synthesis of bimetallic nanoparticles (BNPs) of gold and palladium (Au–Pd) with an eco-friendly and non-toxic aqueous leaf extract of plant Citrus limon. The BNPs were characterized and toxicity bioassay was examined on the larvae of the pathogen vectors such as Anopheles stephensi and Aedes aegypti mosquitoes. The predation efficiency test was evaluated on the invertebrate non-target organisms such as natural predatory nymphs of dragonfly and damselfly. The results of material characterization using UV VIS spectroscopy confirmed the synthesis of Au–Pd BNPs with the appearance of the SPR bands. FT-IR spectroscopy indicates the presence of functional groups containing high amounts of nitro compounds and amines on the surface of BNPs. TEM result shows the presence of spherical polydisperse Au–Pd BNPs in the sample. The XRD pattern displayed the semi-crystalline nature and the changes in the hydrodynamic size and surface potential was determined for the sample at 0 h, 24 h, 48 h, and 72 h of synthesis through DLS and ZP analysis. Au–Pd BNPs Bioassay provided the effective lethal concentrations (LC50) against the I–IV instar larvae of An. stephensi and Ae. aegypti after 24 h, 48 h, and 72 h of exposure. The LC50 obtained from the larvicidal bioassay was used to test its effect on the predation efficiency of the selected nymphs which showed increased predation from 40 to 48 h of exposure as compared to the negative control. Hereby, we conclude that Au–Pd BNPs bioassay shows toxic mosquito larvicidal activity at the selected concentration with no lethal effect on the predation efficiency of the selected stage of the predatory non-target aquatic invertebrate insects.


2007 ◽  
Vol 77 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Chaturvedi ◽  
George ◽  
Machacha

The methanol extract of Raphanus sativus root extract showed a protective effect on paracetamol-induced hepatotoxicity in a dose-dependent manner. Degree of lipid peroxidation caused by paracetamol was measured in terms of thiobarbituric acid reactive substances (TBARS) and protection was measured in reference to serum glutamate oxaloacetate transaminase (SGOT), serum glutamate aspartate transaminase (SGPT), and blood and hepatic levels of antioxidants like glutathione and catalase. Administration of extract along with paracetamol showed significant protection. Levels of TBARS were found to be low, activities of SGOT and SGPT were low, while hepatic glutathione levels were significantly higher in experimental rats that received the mixture of paracetamol and the extract as compared to rats that received paracetamol only. Activities of catalase were also high in all experimental groups. Thus this study indicates the involvement of Raphanus sativus root extract with antioxidants like glutathione and catalase in rendering protection against paracetamol-induced lipid peroxidation and hepatotoxicity.


2014 ◽  
Vol 9 (4) ◽  
pp. 1934578X1400900
Author(s):  
Prasit Sirwannalert ◽  
Ryusho Kariya ◽  
Ikuko Suzu ◽  
Seiji Okada

The purposes of this study were to investigate the inhibitory effects of Salacia reticulata Tul. root extract on cellular oxidants and melanogenesis in B16 melanoma cells. Cells treated with non-toxic doses of S. reticulata root extract were investigated for their effects on melanogenesis, cellular tyrosinase activity and cellular oxidant scavenging activity. The results indicated that S. reticulata extract inhibited melanin synthesis and tyrosinase activity in α-MSH-induced or UV-irradiated B16 melanoma cells in a dose dependent manner. Additionally, the extract also exhibited anti-cellular oxidants in UV-induced radical melanoma cells. Altogether, these results suggested that S. reticulata root extract has roles in suppression of melanogenesis and oxidant inhibition. S. reticulata root extract may be a potential source for the development of pharmaceutical products for treatment of skin hyperpigmentation disorders.


Author(s):  
Nadana Saravanan ◽  
Namasivayam Nalini

AbstractAlcoholic liver disease (ALD) is one of the most common diseases in modern society. A large number of studies are in progress aiming to identify natural substances that would be effective in reducing the severity of ALD. Although there are currently a number of drugs on the market, their long-term use can have numerous side effects. Hemidesmus indicus is an indigenous Ayurvedic medicinal plant used in soft drinks in India. In this study, we examined the effects of its ethanolic root extract on experimental liver damage in order to evaluate its hepatoprotective effects against hepatotoxicity induced in rats by ethanol at a dosage of 5 g/kg body weight for 60 days. The H. indicus root extract was given at a dose of 500 mg/kg body weight for the last 30 days of the experiment. The animals were monitored for food intake and weight gain. The liver was analysed for the degree of lipid peroxidation using thiobarbituric acid reactive substances (TBARS) and antioxidant status using the activities of glutathione-depedendant enzymes. The degree of liver damage was analysed using serum marker enzyme activities, the total protein, albumin, globulin, ceruloplasmin and liver glycogen contents, and the A/G ratio. The Fourier transform infrared spectra (FT-IR) of the liver tissues were recorded in the region of 4000–400 cm−1. The ethanol-fed rats showed significantly elevated liver marker enzyme activities, lipid peroxidation levels and reduced antioxidant levels as compared to the control rats. Oral administration of H. indicus for the latter 30 days resulted in an increased food intake and weight gain, decreased TBARS levels, near normal levels of glutathione-dependent enzymes, increased total protein, albumin, globulin and liver glycogen contents, an increased A/G ratio, and decreased liver marker enzyme activities and ceruloplasmin levels. The relative intensity of the liver FT-IR bands for the experimental groups were found to be altered significantly (p < 0.05) compared to the control samples. For the group that had H. indicus co-administered with ethanol, the intensity of the bands was near normal. Moreover, the results of the FT-IR study correlated with our biochemical results.


Author(s):  
Mahmood Ahmad Khan ◽  
Mythily Subramaneyaan ◽  
Vinod Kumar Arora ◽  
Basu Dev Banerjee ◽  
Rafat Sultana Ahmed

Abstract: Rheumatoid arthritis is an inflammatory autoimmune disorder.: CIA rats were treated by using three doses of WSAq (100, 200, 300 mg/kg b. wt., orally) and methotrexate (MTX, 0.25 mg/kg b. wt. i.p.) as a standard reference drug for 20 days. The anti-arthritic effect was assayed by measuring the arthritic index, autoantibodies such as rheumatoid factor (RF), anti-cyclic citrullinated peptide antibody (a-CCP), anti-nuclear antibody (ANA), anti-collagen type II antibody (a-CII) and inflammatory marker like C-reactive protein (CRP). The oxidative stress parameters were also measured.: Treatment with WSAq resulted in a dose-dependent reduction in arthritic index, autoantibodies and CRP (p<0.05) with maximum effect at dose of 300 mg/kg b. wt. and the results were comparable to that of MTX-treated rats. Similarly, oxidative stress in CIA rats was ameliorated by treatment with different doses of WSAq, as evidenced by a decrease in lipid peroxidation and glutathione-: The results showed that WSAq exhibited antioxidant and anti-arthritic activity and reduced inflammation in CIA rats and suggests the potential use of this plant in the treatment of arthritis.


2015 ◽  
Vol 69 (5) ◽  
Author(s):  
Kristýna Šebrlová ◽  
Ondřej Peš ◽  
Iva Slaninová ◽  
Ondřej Vymazal ◽  
Jana Kantorová ◽  
...  

AbstractStylophorum lasiocarpum (Oliv.) Fedde (Papaveraceae) belongs to traditional Chinese medicine herbs but there was minimal information on the content of alkaloids in this plant. Extracts from the aerial part and roots were examined by liquid chromatography with UV and mass spectrometric detection, with nineteen alkaloids identified. Changes in alkaloid content over the entire vegetation period of a one- and two-year old plant were studied. The protoberberine alkaloids, coptisine and stylopine, were found to be the main substances in extracts of the aerial part irrespective of the plant’s age and time of harvest. Variable amounts of protopine, sanguinarine, chelerythrine, chelirubine, macarpine, chelilutine and berberine were also recorded in the aerial part. The roots contained significantly larger quantities of all alkaloids than the aerial part with the levels of most alkaloids varying from May to October, peaking in the middle of the vegetation period. Coptisine was the dominant alkaloid in all samples. The antiproliferative activities of the root extract and of seven individual alkaloids were tested on A375 human malignant melanoma cells. The significant dose-dependent toxicity of the root extract was attributed largely to the quaternary benzo[c]phenanthridine alkaloids, macarpine and sanguinarine.


Sign in / Sign up

Export Citation Format

Share Document